Автор работы: Пользователь скрыл имя, 29 Апреля 2013 в 06:12, курсовая работа
На первых порах расширение запаса чисел происходило медленно. Сначала люди овладели счетом в пределах нескольких десятков и лишь позднее дошли до сотни. У многих народов число 40 долгое время было пределом счета и названием неопределенно большого количества. В русском языке слово «сороконожка» имеет смысл «многоножка»; выражение «сорок сороков» означало в старину число, превосходящее всякое воображение. На следующей ступени счет достигает нового предела: десяти десятков, и создается название для числа 100. Вместе с тем слово «сто» приобретает смысл неопределенно большого числа. Такой же смысл приобретают потом последовательно числа тысяча, десять тысяч (в старину это число называлось «тьма»), миллион.
Глава 1.История развития систем счисления……..………………………..2
Зарождение систем счисления………………………………………………2
Образование десятичной системы счисления……………………………....4
Глава 2. Системы счисления…………….…………………………………..5
2.1 Позиционные и непозиционные системы счисления………………………5
2.2 Двоичная(бинарная) система счисления…………………………………….6
2.3. Восьмеричная система счисления…………………………………………..6
2.4. Десятеричная система счисления…………………………………………...6
2.5. Шестнадцатеричная система счисления……………………………………7
Глава 3. Представление чисел в ЭВМ…………………………………..8
Представление чисел с фиксированной и плавающей запятой.………...…8
3.2 Числа с фиксированной запятой…………………………………………….8
3.3 Числа с плавающей запятой…………………………………………………9
3.3 Прямой, обратный и дополнительный коды. Модифицированный код…10
Глава 4. Перевод чисел…………………………………………………...13
4.1 Представление двоичных чисел и перевод их в десятичные…………….13
4.2 Преобразование десятичных чисел в двоичные…………………………..13
4.2.1 Метод деления……………………………………………………………..13
4.2.2 Метод умножения………………………………………………………….14
5.Постановка задачи………………………………………………………15
6.Внешнее проектирование программы…………………………………15
7.Математическая модель………………………………………………...16
8.Кодирование и отладка программы….……………………………...…17
9.Таблица тестов…………………………………………………………..23
10.Список литературы………………………………………..…………..24
2.4. Десятеричная система счисления.
Использует десять обычных
цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также
символы «+» и «–» для
2.5. Шестнадцатеричная система счисления.
Использует шестнадцать цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9 в их обычном смысле, а затем A=10, B=11 , C=12 , D=13 , E=14 , F=15 . Также использует символы «+» и «–» для обозначения знака числа и запятую (точку) для разделения целой и дробной частей числа. Внедрена американской корпорацией IBM. Широко используется в программировании для IBM-совместимых компьютеров. С другой стороны, в некоторых языках сохранились и следы использования этой системы счисления в прошлом. Например, в романских языках (испанском, французском и др.) числительные от 11 до 16 образуются по одному правилу, а от 17 до 19 – по другому. А в русском языке известен пуд, равный 16 килограммам.
BIN |
OCT |
DEC |
HEX |
0 |
0 |
0 |
0 |
001 |
1 |
1 |
1 |
010 |
2 |
2 |
2 |
011 |
3 |
3 |
3 |
100 |
4 |
4 |
4 |
101 |
5 |
5 |
5 |
110 |
6 |
6 |
6 |
111 |
7 |
7 |
7 |
1 000 |
10 |
8 |
8 |
1 001 |
11 |
9 |
9 |
1 010 |
12 |
10 |
A |
1 011 |
13 |
11 |
B |
1 100 |
14 |
12 |
C |
1 101 |
15 |
13 |
D |
1 110 |
16 |
14 |
E |
1 111 |
17 |
15 |
F |
10 000 |
20 |
16 |
10 |
Глава 3. Представление чисел в ЭВМ.
3.1 Представление
чисел с фиксированной и
При представлении числа в двоичном коде с цифрами 0,1 в каждом разряде записываются цифры 0 или 1. Так как в ЭВМ «запись» числа осуществляется с помощью технических устройств, то для представления его в такой форме необходимо располагать устройствами с двумя надежно различными состояниями, которым могут быть сопоставлены значения 0 или 1. Комбинация таких устройств, число которых соответствует количеству разрядов записываемого числа, может быть использована для представления чисел в ЭВМ.
В качестве таких устройств, могут быть использованы триггеры. Набор триггеров, предназначенных для представления чисел в ЭВМ, а также для выполнения над ними некоторых логических преобразований, называется регистром. Разумеется, число разрядов, отведенное для записи числа, соответствующее числу триггеров, в ЭВМ всегда конечно. Выбор количества разрядов для представления чисел в ЭВМ является одним из самых ответственных этапов конструирования вычислительной машины и обуславливается целым рядом требований, среди которых одно из важнейших – необходимая точность вычислений.
В ЭВМ применяются две основные формы представления чисел: полулогарифмическая – с плавающей запятой и естественная – с фиксированным положением запятой.
При представлении чисел с
Использование представления чисел с фиксированной запятой позволяет упростить схемы машины, повысить ее быстродействие, но представляет определенные трудности при программировании. В настоящее время представление чисел с фиксированной запятой используется как основное только в микроконтроллерах.
В универсальных ЭВМ основным является представление чисел с плавающей запятой. Широкий диапазон представления чисел с плавающей запятой удобен для научных и инженерных расчетов. Для повышения точности вычислений во многих ЭВМ предусмотрена возможность использования формата двойной длины, однако при этом происходит увеличение затрат памяти на хранение данных и замедляются вычисления.
Рассмотрим подробнее эти два формата.
3.2 Числа с фиксированной запятой.
Формат для чисел с запятой, фиксированной перед старшим разрядом. В этом формате могут быть с точностью до представлены числа (правильные дроби) в диапазоне
.
Первые ЭВМ были машинами с фиксированной запятой, причем запятая фиксировалась перед старшим разрядом числа. В настоящее время, как правило, форму с фиксированной запятой применяют для представления целых чисел (запятая фиксирована после младшего разряда).
Используют два варианта представления целых чисел: со знаком и без знака. В последнем случае все разряды разрядной сетки служат для представления модуля числа. В ЕС ЭВМ применяются оба указанных варианта представления целых чисел, причем каждый из вариантов реализуется как в формате 32-разрядного машинного слова этих машин, так и в формате 16-разрядного полуслова.
При выполнении арифметических действий над правильными дробями могут получаться двоичные числа, по абсолютной величине больше или равные единице, что называется переполнением разрядной сетки. Для исключения возможности переполнения приходится масштабировать величины, участвующие в вычислениях.
Достоинство представления чисел
в форме с фиксированной
Недостатки – в необходимости выбора масштабных коэффициентов и в низкой точности представления с малыми значениями модуля (нули в старших разрядах модуля приводит к уменьшению количества разрядов, занимаемых значащей частью модуля числа).
3.3 Числа с плавающей запятой.
При использовании плавающей
(5.1)
Мантисса и порядок представляются в двоичном коде. Обычно число дается в нормализованном виде, когда его мантисса является правильной дробью, причем первая значащая цифра (единица) следует непосредственно после запятой: например, где m=0,1010; p=10; q=2
Порядок указывает действительное положение запятой в числе. Код в приведенном формате представляет значение числа в полулогарифмической форме: .
Точность представления значений зависит от количества значащих цифр мантиссы. Для повышения точности числа с плавающей запятой представляются в нормализованной форме, при которой значение модуля мантиссы лежит в пределах . Признаком нормализованного числа служит наличие единицы в старшем разряде модуля мантиссы. В нормализованной форме могут быть представлены все числа из некоторого диапазона за исключением нуля.
Нормализованные двоичные числа с плавающей запятой представляют значения модуля в диапазоне:
,
где – максимальное значение модуля порядка.
Так, при p=7 –1= =63 и диапазон представления модулей нормализованных чисел:
,
Таким образом, диапазон чисел:
Для расширения диапазона представляемых чисел при фиксированной длине разрядной сетки (m+p) в качестве основания системы счисления выбирается . При этом число, представляемое в разрядной сетке, приобретает значения . Нормализованная мантисса 16-ричного числа с плавающей запятой имеет значения, лежащее в диапазоне . Признаком нормализации такого числа является наличие хотя бы одной единицы в четырех старших разрядах модуля мантиссы. Диапазон представления чисел в этом случае существенно расширяется, находясь при том же количестве разрядов в пределах от до .
m m –
1
… |
… |
Знак
числа
3.3 Прямой, обратный и дополнительный коды. Модифицированный код
При рассмотрении элементарных арифметических операций над двоичными числами мы уже коснулись темы отрицательных двоичных чисел. Теперь рассмотрим ее подробнее.
Для кодирования знака двоичного числа используется старший ("знаковый") разряд (ноль соответствует плюсу, единица – минусу).
Такая форма представления числа называется прямым кодом.
В ЭВМ прямой код применяется
только для представления
Правила для образования дополнительного и обратного кода состоят в следующем:
Прямой код можно получить из дополнительного и обратного по тем же правилам, которые служат для нахождения дополнительного и обратного кодов.
В таблице 5.1 пpиведены десятичные числа и их двоичные пpедставления в тpех pазличных фоpмах. Интеpесно в ней вот что. Если начать счет с числа 1000 (–8) и двигаться вниз по столбцам, то в дополнительном коде каждое последующее число получается пpибавлением единицы к пpедыдущему без учета пеpеноса за пpеделы четвеpтого pазpяда Так пpосто эту опеpацию в пpямом и обpатном кодах не осуществить. Эта особенность дополнительного кода и явилось пpичиной пpедпочтителного пpименения его в совpеменных микpо и миниЭВМ.
Итак, числа, пpедставленные в дополнительном коде, складываются по пpавилам двоичного сложения, но без учета каких либо пеpеносов за пpеделы стаpшего pазpяда. Рассмотpим это на пpимеpах 5.1.
Прямой, обратный и дополнительный коды
.
Десятичное число |
Прямой код |
Обратный код |
Дополнительный код |
-8 |
– |
– |
1000 |
-7 |
1111 |
1000 |
1001 |
-6 |
1110 |
1001 |
1010 |
-5 |
1101 |
1010 |
1011 |
-4 |
1100 |
1011 |
1110 |
-3 |
1011 |
1100 |
1101 |
-2 |
1010 |
1101 |
1110 |
-1 |
1001 |
1110 |
1111 |
0 |
1000 0000 |
1111 0000 |
0000 |
1 |
0001 |
0001 |
0001 |
2 |
0010 |
0010 |
0010 |
3 |
0011 |
0011 |
0011 |
4 |
0100 |
0100 |
0100 |
5 |
0101 |
0101 |
0101 |
6 |
0110 |
0110 |
0110 |
7 |
0111 |
0111 |
0111 |