Системы счисления, переводы чисел

Автор работы: Пользователь скрыл имя, 29 Апреля 2013 в 06:12, курсовая работа

Описание работы

На первых порах расширение запаса чисел происходило медленно. Сначала люди овладели счетом в пределах нескольких десятков и лишь позднее дошли до сотни. У многих народов число 40 долгое время было пределом счета и названием неопределенно большого количества. В русском языке слово «сороконожка» имеет смысл «многоножка»; выражение «сорок сороков» означало в старину число, превосходящее всякое воображение. На следующей ступени счет достигает нового предела: десяти десятков, и создается название для числа 100. Вместе с тем слово «сто» приобретает смысл неопределенно большого числа. Такой же смысл приобретают потом последовательно числа тысяча, десять тысяч (в старину это число называлось «тьма»), миллион.

Содержание работы

Глава 1.История развития систем счисления……..………………………..2
Зарождение систем счисления………………………………………………2
Образование десятичной системы счисления……………………………....4
Глава 2. Системы счисления…………….…………………………………..5
2.1 Позиционные и непозиционные системы счисления………………………5
2.2 Двоичная(бинарная) система счисления…………………………………….6
2.3. Восьмеричная система счисления…………………………………………..6
2.4. Десятеричная система счисления…………………………………………...6
2.5. Шестнадцатеричная система счисления……………………………………7
Глава 3. Представление чисел в ЭВМ…………………………………..8
Представление чисел с фиксированной и плавающей запятой.………...…8
3.2 Числа с фиксированной запятой…………………………………………….8
3.3 Числа с плавающей запятой…………………………………………………9
3.3 Прямой, обратный и дополнительный коды. Модифицированный код…10
Глава 4. Перевод чисел…………………………………………………...13
4.1 Представление двоичных чисел и перевод их в десятичные…………….13
4.2 Преобразование десятичных чисел в двоичные…………………………..13
4.2.1 Метод деления……………………………………………………………..13
4.2.2 Метод умножения………………………………………………………….14
5.Постановка задачи………………………………………………………15
6.Внешнее проектирование программы…………………………………15
7.Математическая модель………………………………………………...16
8.Кодирование и отладка программы….……………………………...…17
9.Таблица тестов…………………………………………………………..23
10.Список литературы………………………………………..…………..24

Файлы: 1 файл

Курсовая работа по информатике На тему- Системы счисления, перев.doc

— 478.45 Кб (Скачать файл)

2.4. Десятеричная система счисления.

Использует десять обычных  цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также  символы «+» и «–» для обозначения  знака числа и запятую (точку) для разделения целой и дробной  частей числа. Существует массовое заблуждение, будто именно десятичная система счисления является наиболее употребительным способом записи чисел. Между тем, более внимательный анализ правил чтения и записи чисел приводит к другому выводу: система счисления, которой мы обычно пользуемся, фактически является двойной, так как имеет основания – 10 и 1000. В частности, в русском языке известны названия только для первых семи разрядов десятичной системы счисления ( 1 – единица, 10 – десяток, 100 – сотня, 1000 – тысяча, 10000 – тьма, 100000 – легион, 1000000 – миллион ), но предпоследние два из них (легион и тьма) давно вышли из употребления, а соседние с ними (миллион и тысяча) – названия классов, а не только разрядов. Итак, фактически в русском языке остались лишь два самостоятельных названия для десятичных разрядов: десяток и сотня. В других языках – аналогичная ситуация.

2.5. Шестнадцатеричная система счисления.

Использует шестнадцать  цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9 в их обычном  смысле, а затем A=10, B=11 , C=12 , D=13 , E=14 , F=15 . Также использует символы «+» и «–» для обозначения знака числа и запятую (точку) для разделения целой и дробной частей числа. Внедрена американской корпорацией IBM. Широко используется в программировании для IBM-совместимых компьютеров. С другой стороны, в некоторых языках сохранились и следы использования этой системы счисления в прошлом. Например, в романских языках (испанском, французском и др.) числительные от 11 до 16 образуются по одному правилу, а от 17 до 19 – по другому. А в русском языке известен пуд, равный 16 килограммам.

BIN

OCT

DEC

HEX

0

0

0

0

001

1

1

1

010

2

2

2

011

3

3

3

100

4

4

4

101

5

5

5

110

6

6

6

111

7

7

7

1 000

10

8

8

1 001

11

9

9

1 010

12

10

A

1 011

13

11

B

1 100

14

12

C

1 101

15

13

D

1 110

16

14

E

1 111

17

15

F

10 000

20

16

10




 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 3. Представление чисел в ЭВМ.

 

3.1  Представление  чисел с фиксированной и плавающей  запятой.

 

При представлении числа  в двоичном коде с цифрами 0,1 в  каждом разряде записываются цифры 0 или 1. Так как в ЭВМ «запись» числа осуществляется с помощью технических устройств, то для представления его в такой форме необходимо располагать устройствами с двумя надежно различными состояниями, которым могут быть сопоставлены значения 0 или 1. Комбинация таких устройств, число которых соответствует количеству разрядов записываемого числа, может быть использована для представления чисел в ЭВМ.

В качестве таких устройств, могут быть использованы триггеры. Набор триггеров, предназначенных для представления чисел в ЭВМ, а также для выполнения над ними некоторых логических преобразований, называется регистром. Разумеется, число разрядов, отведенное для записи числа, соответствующее числу триггеров, в ЭВМ всегда конечно. Выбор количества разрядов для представления чисел в ЭВМ является одним из самых ответственных этапов конструирования вычислительной машины и обуславливается целым рядом требований, среди которых одно из важнейших – необходимая точность вычислений.

В ЭВМ применяются  две основные формы представления  чисел: полулогарифмическая – с плавающей запятой и естественная – с фиксированным положением запятой.

При представлении чисел с фиксированной  запятой положение запятой закрепляется  в определенном месте относительно разрядов числа и сохраняется неизменным для всех  чисел, изображаемых в данной разрядной сетке. Обычно запятая фиксируется перед старшим разрядом или после младшего. В первом случае в  разрядной сетке могут быть представлены только числа, которые по модулю меньше 1, во втором – только целые числа.

Использование представления чисел  с фиксированной запятой позволяет упростить схемы машины, повысить ее быстродействие, но представляет определенные трудности при программировании. В настоящее время представление чисел с фиксированной запятой используется как основное только в микроконтроллерах.

В универсальных ЭВМ основным является представление чисел с плавающей запятой. Широкий диапазон представления чисел с плавающей  запятой удобен для научных и инженерных расчетов. Для повышения точности вычислений во многих ЭВМ предусмотрена возможность использования формата двойной длины, однако при этом происходит увеличение затрат памяти на хранение данных и замедляются вычисления.

Рассмотрим подробнее эти два  формата.

 

3.2  Числа с фиксированной запятой.

 

Формат для чисел с запятой, фиксированной перед старшим  разрядом. В этом формате могут быть с точностью до   представлены числа (правильные дроби) в диапазоне

.

Первые ЭВМ были машинами с фиксированной запятой, причем запятая фиксировалась перед старшим разрядом числа. В настоящее время, как правило, форму с фиксированной запятой применяют для представления целых чисел (запятая фиксирована после младшего разряда).

Используют два варианта представления  целых чисел: со знаком и без знака. В последнем случае все разряды разрядной сетки служат для представления модуля числа. В ЕС ЭВМ применяются оба указанных варианта представления целых чисел, причем каждый из вариантов реализуется как в формате 32-разрядного машинного слова этих машин, так и в формате 16-разрядного полуслова.

При выполнении арифметических действий над правильными дробями  могут получаться  двоичные  числа,  по  абсолютной  величине больше или равные единице, что называется переполнением разрядной сетки. Для исключения возможности переполнения приходится масштабировать величины, участвующие в вычислениях.

Достоинство представления чисел  в форме с фиксированной запятой  состоит в простоте выполнения арифметических операций.

Недостатки – в необходимости  выбора масштабных коэффициентов и  в низкой точности представления с малыми значениями модуля (нули в старших разрядах модуля приводит к уменьшению количества разрядов, занимаемых значащей частью модуля числа).

 

3.3  Числа с плавающей запятой.

 

При использовании плавающей запятой  число состоит из двух частей: мантиссы m, содержащей значащие цифры числа, и порядка p, показывающего степень, в которую надо возвести основание числа q, чтобы полученное при этом число, умноженное на мантиссу, давало истинное значение представляемого числа:

                 (5.1)

Мантисса и порядок  представляются в двоичном коде. Обычно число дается в нормализованном виде, когда его мантисса является правильной дробью, причем первая значащая цифра (единица) следует непосредственно после запятой: например, где m=0,1010; p=10; q=2

Порядок указывает действительное положение запятой в числе. Код  в приведенном формате представляет значение числа в полулогарифмической форме: .

Точность представления  значений зависит от количества значащих цифр мантиссы. Для повышения точности числа с плавающей запятой представляются в нормализованной форме, при которой значение модуля мантиссы лежит в пределах . Признаком нормализованного числа служит наличие единицы в старшем разряде модуля мантиссы. В нормализованной форме могут быть представлены все числа из некоторого диапазона за исключением нуля.

Нормализованные двоичные числа с плавающей запятой  представляют значения модуля в диапазоне:

    ,

где – максимальное значение модуля порядка.

Так, при p=7 –1= =63 и диапазон представления модулей нормализованных чисел:

,

                                             

Таким образом, диапазон чисел:

      

Для расширения диапазона  представляемых чисел при фиксированной  длине разрядной сетки (m+p) в качестве основания системы счисления выбирается . При этом число, представляемое в разрядной сетке, приобретает значения . Нормализованная мантисса 16-ричного числа с плавающей запятой имеет значения, лежащее в диапазоне . Признаком нормализации такого числа является наличие хотя бы одной единицы в четырех старших разрядах модуля мантиссы. Диапазон представления чисел в этом случае существенно расширяется, находясь при том же количестве разрядов в пределах от до .

 

   m     m –  1                                                                 1          p       p – 1                                   1

   

         …

     

     …

 


 

Знак                                      Модуль мантиссы                            Знак                Модуль порядка

числа                                                                                            порядка

 

3.3 Прямой, обратный и дополнительный коды. Модифицированный код

 

При рассмотрении элементарных арифметических операций над двоичными  числами мы уже коснулись темы отрицательных двоичных чисел. Теперь рассмотрим ее подробнее.

Для кодирования  знака  двоичного числа используется старший ("знаковый") разряд (ноль соответствует плюсу, единица – минусу).

Такая форма представления  числа называется прямым кодом.

В ЭВМ  прямой код применяется  только для представления положительных  двоичных чисел.  Для представления отрицательных чисел применяется либо дополнительный,  либо обратный код,  так как над отрицательными числами в прямом коде неудобно выполнять арифметические операции.

Правила для образования  дополнительного и обратного  кода состоят в следующем:

  • для образования дополнительного кода отрицательного числа необходимо в  знаковом разряде поставить единицу,  а все цифровые разряды инвертировать (заменить 1 на 0,  а 0 – на 1),  после чего прибавить 1 к младшему разряду;
  • для образования обратного кода отрицательного числа  необходимо в знаковом разряде поставить единицу, а все цифровые разряды инвертировать;
  • при  данных преобразованиях нужно учитывать размер разрядной сетки.

Прямой код  можно  получить из дополнительного и обратного  по тем же правилам,  которые служат для нахождения дополнительного  и обратного кодов.

 

В таблице 5.1 пpиведены десятичные числа и их двоичные пpедставления в тpех pазличных фоpмах. Интеpесно в ней вот что. Если начать счет с числа 1000 (–8) и двигаться вниз по столбцам, то в дополнительном коде каждое последующее число получается пpибавлением единицы к пpедыдущему без учета пеpеноса за  пpеделы четвеpтого pазpяда Так пpосто эту опеpацию в пpямом и обpатном кодах не осуществить. Эта особенность дополнительного кода и  явилось пpичиной пpедпочтителного пpименения его в совpеменных микpо и миниЭВМ.

Итак, числа, пpедставленные в дополнительном коде, складываются по пpавилам двоичного сложения, но без учета каких  либо пеpеносов за пpеделы стаpшего pазpяда. Рассмотpим это на пpимеpах 5.1.

 

 

Прямой, обратный и дополнительный коды

.

Десятичное

число

Прямой

код

Обратный

код

Дополнительный

код

-8

1000

-7

1111

1000

1001

-6

1110

1001

1010

-5

1101

1010

1011

-4

1100

1011

1110

-3

1011

1100

1101

-2

1010

1101

1110

-1

1001

1110

1111

0

1000

0000

1111

0000

0000

1

0001

0001

0001

2

0010

0010

0010

3

0011

0011

0011

4

0100

0100

0100

5

0101

0101

0101

6

0110

0110

0110

7

0111

0111

0111

Информация о работе Системы счисления, переводы чисел