Автор работы: Пользователь скрыл имя, 05 Июня 2013 в 10:15, реферат
Проблема загораживания одних объектов другими имеет место, когда рассматривается большое число объектов в реальном рабочем пространстве. Даже если бы система была способна идеально выделить группу объектов из фона, то все ранее рассмотренные двумерные процедуры описания и распознавания дали бы плохой результат для большинства загороженных объектов. Применение трехмерных дескрипторов было бы более успешным, но даже они дали бы неполную информацию. Разработка методов обработки трехмерной зрительной информации в роботизированных и автоматизированных системах в настоящее время задача актуальная, так как такие факторы, как стоимость, скорость, сложность вычислений, трудность реализации алгоритмов делают неприемлемыми многие уже существующие методы.
С целью классификации методов и подходов, используемых в системах технического зрения, зрение разбито на три основных подкласса: зрение низкого, среднего и высокого уровней. Системы технического зрения низкого уровня предназначены для обработки информации с датчиков очувствления.
Эти системы можно отнести к классу «интеллектуальных» машин, если они обладают следующими признаками (признаками интеллектуального поведения):
1) возможностью выделения существенной информации из множества независимых признаков;
2) способностью к обучению на примерах и обобщению этих знаний с целью их применения в новых ситуациях;
3) возможностью восстановления событий по неполной информации;
4) способностью определять цели и формулировать планы для достижения этих целей.
Создание систем технического зрения с такими свойствами для ограниченных видов рабочего пространства в принципе возможно, но характеристики таких систем далеки от возможностей человеческого зрения. В основе технического зрения лежит аналитическая формализация, направленная на решение конкретных задач. Машины с сенсорными характеристиками, близкими к возможностям человека, по-видимому, появятся еще не скоро. Однако отметим, что копирование природы не является единственным решением этой проблемы. Читателю наверняка известны ранние экспериментальные образцы аэропланов с машущими крыльями и другими особенностями полета птиц. Современное решение задачи о полете в пространстве в корне отличается от решений, подсказанных природой. По скорости и достижимой высоте самолеты намного превосходят возможности птиц.
Системы технического зрения среднего уровня связаны с задачами сегментации, описания и распознавания отдельных объектов. Эти задачи охватывают множество подходов, основанных на аналитических представлениях. Системы технического зрения высокого уровня решают проблемы, рассмотренные выше. Для более ясного понимания проблем технического зрения высокого уровня и его связи с техническим зрением низкого и среднего уровней введем ряд ограничений и упростим решаемую задачу.
Сегментацией называется процесс подразделения сцены на составляющие части или объекты. Сегментация является одним из основных элементов работы автоматизированной системы технического зрения, так как именно на этой стадии обработки объекты выделяются из сцены для дальнейшего распознавания и анализа. Алгоритмы сегментации, как правило, основываются на двух фундаментальных принципах: разрывности и подобии. В первом случае основной подход основывается на определении контуров, а во втором — на определении порогового уровня и расширении области. Эти понятия применимы как к статическим, так и к динамическим (зависящим от времени) сценам. В последнем случае движение может служить мощным средством для улучшения работы алгоритмов сегментации.
Методы - вычисление градиента, пороговое разделение - определяют разрывы в интенсивности представления образа объекта. В идеальном случае эти методы определяют пикселы, лежащие на границе между объектом и фоном. На практике данный ряд пикселов редко полностью характеризует границу из-за шума, разрывов на границе вследствие неравномерной освещенности и других эффектов, приводящих к размытию изображения. Таким образом, алгоритмы обнаружения контуров сопровождаются процедурами построения границ объектов из соответствующих последовательностей пикселов. Ниже рассмотрено несколько методик, пригодных для этой цели.
Одним из наиболее простых подходов соединения точек контура является анализ характеристик пикселов в небольшой окрестности (например, в окрестности размером 3 X 3 или 5 X 5) каждой точки (х, у) образа, который уже подвергся процедуре обнаружения контура. Все точки, являющиеся подобными (определение критерия подобия дано ниже), соединяются, образуя границу из пикселов, обладающих некоторыми общими свойствами.
При таком анализе для установления подобия пикселов контура необходимо определить:
1 ) величину градиента, требуемого для построения контурного пиксела,
2) направление градиента.
Первая характеристика обозначается величиной G{f(x, у)].
Таким образом, пиксел контура с координатами (х', у') подобен по величине в определенной ранее окрестности (х, у) пикселу с координатами (х, у), если справедливо неравенство
где Т—пороговое значение.
Направление градиента устанавливается по углу вектора градиента, определенного в уравнении
где q—угол (относительно оси х), вдоль которого скорость изменения имеет наибольшее значение. Тогда можно сказать, что угол пиксела контура с координатами {х', у') в некоторой окрестности (х, у) подобен углу пиксела с координатами {х, у) при выполнении следующего неравенства:
где А—пороговое значение угла. Необходимо отметить, что направление контура в точке {х, у) в действительности перпендикулярно направлению вектора градиента в этой точке. Однако для сравнения направлений неравенство дает эквивалентные результаты.
Основываясь
на этих предположениях, мы соединяем
точку в некоторой окрестности
Цель состоит в определении размеров прямоугольников, с помощью которых можно построить качественное изображение. Построение таких прямоугольников осуществляется в результате определения строго горизонтальных и вертикальных контуров. Дальнейший процесс состоял в соединении сегментов контура, разделенных небольшими промежутками, и в объединении отдельных коротких сегментов.
Рассмотрим метод соединения граничных точек путем определения их расположения на кривой специального вида. Первоначально предполагая, что на плоскости ху образа дано п точек, требуется найти подпоследовательности точек, лежащих на прямых линиях. Одно из возможных решений состоит в построении всех линий, проходящих через каждую пару точек, а затем в нахождении всех подпоследовательностей точек, близких к определенным линиям. Задача, связанная с этой процедурой, заключается в нахождении п(п— 1)/2 ~ п2 линий и затем в осуществлении п[п(п—1)]/2 ~ п3 сравнений каждой точки со всеми линиями. Этот процесс трудоемок с вычислительной точки зрения за исключением самых простых приложений.
Данную задачу можно решить по-другому, применяя подход, предложенный Хоугом и называемый преобразованием Хоуга. Рассмотрим точку (хi yi) и общее уравнение прямой линии у:= аxi + bi. Имеется бесконечное число линий, проходящих через точку (хi yi), но все они удовлетворяют уравнению у:= аxi + bi при различных значениях а и b. Однако, если мы запишем это уравнение в виде b = -хi а + yi и рассмотрим плоскость аb (пространство параметров), тогда мы имеем уравнение одной линии для фиксированной пары чисел (хi yi). Более того, вторая точка (хj, уj) также имеет в пространстве параметров связанную с ней линию, которая пересекает другую линию, связанную с точкой (хi yi) в точке (а', b’), где значения а' и b’—параметры линии, на которой расположены точки (хi yi) и (хj, уj) в плоскости ху. Фактически все точки, расположенные на этой линии, в пространстве параметров будут иметь линии пересечения в точке (а', b’).
Вычислительная
привлекательность
Проблема, связанная с представлением прямой линии уравнением у = ах + b, состоит в том, что оба параметра а и b стремятся к бесконечности, если линия принимает вертикальное положение. Для устранения этой трудности используется нормальное представление прямой линии в виде
xcosq+ysinq=b.
Это представление для построения таблицы собирающих элементов используется так же, как метод, изложенный выше, но вместо прямых линий мы имеем синусоидальные кривые в плоскости qr. Как и прежде, М точек, лежащих на прямой xcosqi+уsinqi == ri, соответствуют М синусоидальным кривым, которые пересекаются в точке (qi, ri) пространства параметров. Если используется метод возрастания q и нахождения для него соответствующего r, процедура дает М точек в собирающий элемент А (i, j), связанный с точкой (qi, ri).
2.1.3.Глобальный
анализ с помощью методов
Изложенные выше методы основаны на задании последовательности точек контура, полученных в результате градиентного преобразования. Этот метод редко применяется для предварительной обработки данных в ситуациях, характеризуемых высоким уровнем шума, вследствие того, что градиент является производной и усиливает колебания интенсивности. Рассмотрим глобальный подход, основанный на представлении сегментов контура в виде графа и поиске на графе пути наименьшей стоимости, который соответствует значимым контурам. Этот подход представляет приближенный метод, эффективный при наличии шума. Как и следует ожидать, эта процедура значительно сложнее и требует больше времени обработки, чем методы, изложенные выше.
Сначала дадим несколько простых определений. Граф G = (N, А) представляет собой конечное, непустое множество вершин N вместе с множеством А неупорядоченных пар различных элементов из N. Каждая пара из А называется дугой.
Граф, в котором дуги являются направленными, называется направленным графом. Если дуга выходит из вершины ni, к вершине пj, тогда пj называется преемником вершины ni. В этом случае вершина ni называется предшественником вершины пj. Процесс идентификации преемников каждой вершины называется расширением этой вершины. В каждом графе определяются уровни таким образом, чтобы нулевой уровень состоял из единственной вершины, называемой начальной, а последний уровень—из вершин, называемых целевыми. Каждой дуге (ni пj) приписывается стоимость c(ni пj). Последовательность вершин п1, n2, ..., nk, где каждая вершина ni является преемником вершины ri-1, называется путем от ni к пk, а стоимость пути определяется формулой
.
Элемент контура мы определим как границу между двумя пикселами р и q. В данном контексте под контуром понимается последовательность элементов контура.
Понятие порогового уровня (порога) тест вида
Т = Т [х, у, р (х, у), f (х, у)],
где f(x, у) —интенсивность в точке (х, у), р(х, у)—некоторое локальное свойство, определяемое в окрестности этой точки. Пороговое изображение дается следующим выражением:
так что пикселы в g(x, у), имеющие значение 1, соответствуют объектам, а пикселы, имеющие значение 0, соответствуют фону. В уравнении предполагается, что интенсивность объектов больше интенсивности фона. Противоположное условие получается путем изменения знаков в неравенствах.
Если значение Т в уравнении зависит только от f(x, у), то, порог называется глобальным. Если значение Т зависит как от f(x, у), так и от р(х, у), порог называется локальным. Если, кроме того, Т зависит от пространственных координат х а у, в этом случае он называется динамическим порогом.
Глобальные пороги применяются в ситуациях, когда имеется явное различие между объектами и фоном и где освещенность достаточно однородна. Методы обратной и структурированной освещенности, обычно дают изображения, которые могут быть сегментированы путем применения глобальных порогов. Но, как правило, произвольное освещение рабочего пространства приводит к изображениям, которые, если исходить из определения порогового уровня, требуют локального анализа для компенсации таких эффектов, как неоднородность освещения, тени и отражение.
Ниже мы рассмотрим ряд методов для выбора порогов, используемых при сегментации. Хотя некоторые из них могут применяться для выбора глобального порога, они обычно используются в ситуациях, требующих анализа локального порога.
2.2.2.Выбор оптимального порога.
Часто рассматривают гистограмму, состоящую из суммы значений функции плотности вероятности. В случае бимодальной гистограммы аппроксимирующая ее функция дается уравнением
p(z)=P1p1(z)+P2p2(z),
где интенсивность z—случайная переменная величина, p1(z) и p2(z)—функции плотности вероятности, a P1 и P2 – априорные вероятности. В данном случае априорные вероятности означают появление двух видов уровней интенсивности на образе. Полная гистограмма может быть аппроксимирована суммой двух функций плотности вероятности. Если известно, что объект состоит из светлых пикселов и они занимают 20 % площади образа, то Pi ==0,2. Необходимо, чтобы
Р1+Рг=1.
В данном случае это означает, что на остальную часть образа приходится 80 % пикселов фона. Введем две следующие функции от z:
d1(z)=P1p1(z),
d2(z)=P1p1(z).
Из теории принятия решений известно, что средняя ошибка определения пиксела объекта в качестве фона (и наоборот) минимизируется с помощью следующего правила: рассматривая пиксел со значением интенсивности z, мы подставляем это значение z в уравнения (8.2-13) и (8.2-14). Затем мы определяем пиксел как пиксел объекта, если d1(z) >d2(z), или как пиксел фона, если d2(2) > d1(z). Тогда оптимальный порог определяется величиной z, для которой d1{z)=d2(z). Таким образом, полагая в уравнениях z=T, получаем, что оптимальный порог удовлетворяет уравнению