Техническое зрение роботов

Автор работы: Пользователь скрыл имя, 05 Июня 2013 в 10:15, реферат

Описание работы

Проблема загораживания одних объектов другими имеет место, когда рассматривается большое число объектов в реальном рабочем пространстве. Даже если бы система была способна идеально выделить группу объектов из фона, то все ранее рассмотренные двумерные процедуры описания и распознавания дали бы плохой результат для большинства загороженных объектов. Применение трехмерных дескрипторов было бы более успешным, но даже они дали бы неполную информацию. Разработка методов обработки трехмерной зрительной информации в роботизированных и автоматизированных системах в настоящее время задача актуальная, так как такие факторы, как стоимость, скорость, сложность вычислений, трудность реализации алгоритмов делают неприемлемыми многие уже существующие методы.

Файлы: 1 файл

prorobot.ru-02-0024.doc

— 230.50 Кб (Скачать файл)

P1р1(T)=P2p2(T).

 

рис. Гистограмма интенсивности (а) и ее аппроксимация в виде •суммы двух функций плотности вероятности (б).

 

Итак, если известны функциональные зависимости p1(z) и р2(г),. это уравнение можно использовать для нахождения оптимального порога, который отделяет объекты от фона. Если этот порог известен, уравнение может быть использовано для сегментации данного образа.

2.2.3.Определение порогового уровня  на основе характеристик границы.

Одним из наиболее важных аспектов при  выборе порогового уровня является возможность надежно идентифицировать модовые пики для данной гистограммы. Это важно при автоматическом выборе порогового уровня в ситуациях, когда характеристики образа меняются вследствие большого разброса интенсивности. Из изложенного выше очевидно, что возможность выбора «хорошего» порогового уровня может быть существенно увеличена в случае, если пики гистограмм являются высокими, узкими, симметричными и разделены глубокими провалами.

Одним из подходов для улучшения вида гистограмм является рассмотрение только тех пикселов, которые лежат на границе (или около нее) между объектами и фоном. Одно из очевидных улучшений состоит в том, что этот подход позволяет получать гистограммы менее зависимыми от отношения между объектом и фоном. Например, гистограмма интенсивности образа, составленного из маленького объекта на большой площади постоянного фона, определялась бы большим пиком вследствие концентрации пикселов фона. С другой стороны, результирующие гистограммы имели бы пики с более сбалансированными высотами, если бы рассматривались пикселы, лежащие только на (или около) границе между объектом и фоном. Кроме того, вероятность расположения пиксела на границе объекта практически равна вероятности того, что он лежит на границе фона, что улучшает симметрию гистограммных пиков. Окончательно, как показано ниже, использование пикселов, которые удовлетворяют некоторым простым критериям, основанным на операторах градиента и Лапласа, приводит к увеличению провалов между пиками гистограммы.

Выше мы неявно подразумевали, что граница между объектами и фоном известна. Очевидно, что во время проведения сегментации эта информация отсутствует, поскольку нахождение раздела между объектами и фоном является окончательной целью приведенной здесь процедуры. Однако, что, вычислив градиент пиксела, можно определить, лежит ли он или не лежит на контуре. Кроме того, лапласиан может дать информацию о том, лежит ли данный пиксел на темной (т. е. фон) или светлой (объект) стороне контура. С внутренней стороны идеального контура лапласиан равен нулю, поэтому на практике можно ожидать, что провалы гистограмм, образованных пикселами, выбранными по критерию градиент/лапласиан, будут располагаться достаточно редко и иметь желаемую высоту.

Градиент G[f(x,y)] любой точки образа и лапласиан L[f{x, у)]. Эти два свойства можно использовать для формирования трехуровнего образа:

 

 

(где символы 0, +, - представляют три различных уровня освещенности, а Т—пороговый уровень. Предположим, что темный объект располагается на светлом фоне, тогда применение уравнения дает образ s(x, у), в котором все пикселы, не лежащие на контуре (для них значение G[f (х, у)] меньше Т, помечены 0, все пикселы на темной стороне контура помечены + и все пикселы на светлой стороне контура помечены —. Для светлого объекта на темном фоне символы + и - в уравнении (8.2-24) меняются местами.

Только что  изложенная процедура может применяться  для создания сегментированного, бинарного  образа, в котором 1 соответствует объектам, представляющим интерес, и 0—фону. Отметим, что перемещение (вдоль горизонтальных или вертикальных линий сканирования) от светлого фона к темному объекту должно характеризоваться заменой знака - фона на -1- объекта s(x, у). Внутренняя область объекта состоит из пикселов, помеченных либо 0 либо +. Окончательно перемещение от объекта к фону характеризуется заменой знака + на —. Таким образом, горизонтальные или вертикальные линии сканирования, содержащие части объекта, имеют следующую структуру:

(...)(-, +)(0 или +)(+, -)(•••),

где (...) является произвольной комбинацией +, - или 0. Остальные скобки содержат точки объекта и помечены 1. Все другие пикселы вдоль той же линии сканирования помечаются 0, за исключением всех последовательностей из (0 или +), ограниченных (-, +) и (+, -).

2.2.4.Определение порогового уровня, основанное на нескольких переменных.

Изложенные выше методы связаны  с определением порогового уровня для  единственного переменного значения интенсивности. В некоторых приложениях можно использовать более одной переменной для характеристики каждого пиксела образа, увеличивая таким образом не только степень различия между объектом и фоном, но и между самими объектами. Одним из наиболее значимых примеров является цветное зрение, где используются красные, зеленые и голубые компоненты (КЗГ) для формирования составного цветного образа. В этом случае каждый пиксел характеризуется тремя переменными и это позволяет строить трехмерную гистограмму. Основная процедура та же, что и для одной переменной. Пусть, например, даны три 16-уровневых изображения, соответствующие КЗГ компонентам датчика цвета. Сформируем кубическую решетку 16х16х16 и поместим в каждый элемент пикселы, КЗГ компоненты которых имеют интенсивности, соответствующие координатам, определяющим положение этого элемента. Число точек в каждом элементе решетки может быть затем разделено на общее число пикселов образа для формирования нормированной гистограммы.

Теперь выбор  порога заключается в нахождении групп точек в трехмерном пространстве, где каждая «компактная» группа аналогична основной моде гистограммы одной переменной. Например, предположим, что мы ищем две значимые группы точек данной гистограммы, где одна группа соответствует объекту, а другая—фону. Принимая во внимание, что теперь каждый пиксел имеет три компоненты и может быть рассмотрен как точка трехмерного пространства, можно сегментировать образ с помощью следующей процедуры. Для каждого пиксела образа вычисляется расстояние между этим пикселом и центром каждой группы. Тогда, если пиксел располагается рядом с центром группы точек объекта, мы помечаем его 1; в противном случае мы помечаем его 0. Это понятие легко распространить на большую часть компонентов пиксела и соответственно на большую часть групп. Основная сложность состоит в том, что определение значимых групп, как правило, приводит к довольно сложной задаче, поскольку число переменных возрастает.

2.3.Областно-ориентированная сегментация

2.3.1.Основные определения.

Целью сегментации является разделение образа на области. Рассмотрим методы сегментации, основанные на прямом нахождении областей.

Пусть R — область образа. Рассмотрим сегментацию как процесс разбиения R на n подобластей R1, R2, ..., Rn, так что

1. 

2. Pi—связная область, i= 1, 2, ..., п,

3. Ri Ri = для всех i и j, i j,

4. P(Ri) есть ИСТИНА для i= 1, 2, ..., n;

5. P(Ri U Ri) есть ЛОЖЬ для i j, где P(Ri)— логический предикат, определенный на точках из множества Ri, и -пустое множество.

Условие 1 означает, что сегментация должна быть полной, т. е. каждый пиксел должен находиться в образе. Второе условие требует, чтобы точки в области были связными. Условие 3 указывает на то, что области не должны пересекаться. Условие 4 определяет свойства, которым должны удовлетворять пикселы в сегментированной области. Простой пример: Р(Ri) = ИСТИНА, если все пикселы в Ri имеют одинаковую интенсивность. Условие 5 означает, что области Ri и Ri различаются по предикату Р.

2.3.2.Расширение  области за счет объединения  пикселов.

Расширение области сводится к процедуре группирования пикселов или подобластей в большие объединения. Простейшей из них является агрегирование пикселов. Процесс начинается с выбора множества узловых точек, с которых происходит расширение области в результате присоединения к узловым точкам соседних пикселов с похожими характеристиками (интенсивность, текстура или цвет). Пусть цифры внутри ячеек указывают интенсивность. Пусть точки с координатами (3, 2) и (3, 4) используются как узловые. Выбор двух начальных точек приведет к сегментации образа на две области: области R1, связанной с узлом (3, 2), и области R2, связанной с узлом (3, 4). Свойство Р, которое мы будем использовать для того, чтобы отнести пиксел к той или иной области, состоит в том, что модуль разности между интенсивностями пиксела и узловой точки не превышает пороговый уровень Т. Любой пиксел, удовлетворяющий этому свойству одновременно для обоих узлов, произвольно попадает в область Ri. В этом случае сегментация проводится для двух областей, причем точки в R1 обозначаются буквой а, точки в R2 буквой b. Необходимо отметить, что независимо от того, в какой из этих двух областей будет взята начальная точка, окончательный результат будет один и тот же. Если, с другой стороны выбрать Т = 8, была бы получена единственная область

Предыдущий пример, несмотря на его простоту, иллюстрирует некоторые важные проблемы расширения области. Двумя очевидными проблемами являются: выбор начальных узлов для правильного представления областей, представляющих интерес, и определение подходящих свойств для включения точек в различные области в процессе расширения. Выбор множества, состоящего из одной или нескольких начальных точек, следует из постановки задачи. Например, в военных приложениях объекты, представляющие интерес, имеют более высокую температуру, чем фон, и поэтому проявляются более ярко. Выбор наиболее ярких пикселов является естественным начальным шагом в алгоритме процесса расширения области. При отсутствии априорной информации можно начать с вычисления для каждого пиксела набора свойств, который наверняка будет использован при установлении соответствия пиксела той или иной области в процессе расширения. Если результатом вычислений являются группы точек (кластеры), тогда в качестве узловых берутся те пикселы, свойства которых близки к свойствам центроидов этих групп. Так, в примере, приведенном выше, гистограмма интенсивностей показала бы, что точки с интенсивностью от одного до семи являются доминирующими. Выбор критерия подобия зависит не только от задачи, но также от вида имеющихся данных об образе. Например, анализ информации, полученной со спутников, существенно зависит от использования цвета. Задача анализа значительно усложнится при использовании только монохроматических образов. К сожалению, в промышленном техническом зрении возможность получения мультиспектральных и других дополнительных данных об образе является скорее исключением, чем правилом. Обычно анализ области должен осуществляться с помощью набора дескрипторов, включающих интенсивность и пространственные характеристики (моменты, текстуру) одного источника изображения. Отметим, что применение только одних дескрипторов может приводить к неправильным результатам, если не используется информация об условиях связи в процессе расширения области. Это легко продемонстрировать при рассмотрении случайного расположения пикселов с тремя различными значениями интенсивности. Объединение пикселов в «область» на основе признака одинаковой интенсивности без учета условий связи приведет к бессмысленному результату при сегментаци.

Другой важной проблемой при расширении области  является формулировка условия окончания  процесса. Обычно процесс расширения области заканчивается, если больше не существует пикселов, удовлетворяющих критерию принадлежности к той или иной области. Выше упоминались такие критерии, как интенсивность, текстура и цвет, которые являются локальными по своей природе и не учитывают «историю» процесса расширения области. Дополнительный критерий, повышающий мощность алгоритма расширения области, включает понятие размера, схожести между пикселом-кандидатом и только что созданными пикселами (сравнение интенсивности кандидата и средней интенсивности области), а также формы области, подлежащей расширению. Использование этих типов дескрипторов основано на предположении, что имеется неполная информация об ожидаемых результатах.

2.3.2.Разбиение и объединение  области.

Изложенная выше процедура расширения области начинает работу с заданного множества узловых точек. Однако можно сначала разбить образ на ряд произвольных непересекающихся областей и затем объединять и/или разбивать эти области с целью удовлетворения условий. Итеративные алгоритмы разбиения и объединения, работа которых направлена на выполнение этих ограничений, могут быть изложены следующим образом.

Пусть R является полной областью образа, на которой определен предикат Р. Один из способов сегментации R состоит в успешном разбиении площади образа на все меньшие квадратные области, так что для каждой области Ri, P(Ri) = ИСТИНА. Процедура начинает работу с рассмотрения всей области R. Если Р(R)= ЛОЖЬ, область разбивается на квадранты. Если для какого-либо квадранта Р принимает значение ЛОЖЬ, этот квадрант разбивается на подквадранты и т. д. Этот метод разбиения обычно представляется в виде так называемого квадродерева (дерева, у которого каждая вершина имеет только четыре потомка). Отметим, что корень дерева соответствует всему образу,а каждая вершина - разбиению. В данном случае только R4 подлежит дальнейшему разбиению. Если применять только операцию разбиения, можно ожидать, что в результате окончательного разбиения всей площади образа на подобласти последние будут иметь одинаковые свойства. Это можно устранить допустимым объединением так же, как и разбиением. Для того чтобы удовлетворить условиям сегментации, введенным выше, необходимо объединять только те соседние области, пикселы которых удовлетворяют предикату Р, таким образом, две соседние области Ri и Rk объединяются только в том случае, если P(Ri U Rk) = ИСТИНА.

Изложенное  выше можно представить в виде процедуры, где на каждом шаге выполняются  следующие операции:

1. Разбиение области Ri, для которой Р {Ri) = ЛОЖЬ, на четыре непересекающихся квадранта.

2. Объединение соседних областей Ri и Rk, для которых Р (Ri U Rk) = ИСТИНА.

3. Выход на останов, когда дальнейшее объединение или разбиение невозможно.

Возможны варианты этого алгоритма. Например, можно сначала разбить образ на квадратные блоки. Дальнейшее разбиение выполняется по изложенному выше способу, но вначале объединение ограничивается группами из четырех блоков, являющихся в квадродереве потомками и удовлетворяющих предикату Р. Когда дальнейшее объединение этого типа становится невозможным, процедура завершается окончательным объединением областей согласно шагу 2. В этом случае объединяемые области могут иметь различный размер. Основным преимуществом этого подхода является использование одного квадродерева для разбиения и объединения до шага, на котором происходит окончательное объединение.

Информация о работе Техническое зрение роботов