Реконструкция ВОЛС

Автор работы: Пользователь скрыл имя, 12 Мая 2013 в 13:38, реферат

Описание работы

Мир телекоммуникаций и передачи данных сталкивается с динамично растущим спросом на частотные ресурсы. Эта тенденция в основном связана с увеличением числа пользователей Internet и также с растущим взаимодействием международных операторов и увеличением объемов передаваемой информации. Полоса пропускания в расчете на одного пользователя стремительно увеличивается. Поэтому поставщики средств связи при построении современных информационных сетей используют волоконно-оптические кабельные системы наиболее часто.

Файлы: 1 файл

Реконструкция ВОЛС.doc

— 920.00 Кб (Скачать файл)

    (3.4.7)

Исследуем на простом примере. Пусть линия состоит из девяти сегментов, восемь из которых имеет = 0,2 пс/км1/2 и один = 2,0 пс/км1/2. Результирующая такой линии равна 2,078 пс/км1/2. Если же все девять сегментов имеют = 0,2 пс/км1/2, то результирующая будет равна 0,6 пс/км1/2. Это означает, что все сегменты должны тестироваться, чтобы исключить возможность резкого влияния низких характеристик одного сегмента на линию в целом [4].

 

Глава 4. Методы компенсации  хроматической дисперсии

4.1. Обзор методов компенсации  дисперсии

В настоящее время предложено и  исследовано большое количество способов компенсации дисперсии. Их можно разделить на следующие  три класса [7]:

  • способы компенсации дисперсии,  основанные на управлении       пространственным распределением дисперсии волоконно-оптической линии связи (ВОЛС) для обеспечения нулевого суммарного (интегрального) значения дисперсии для всей линии;
  • способы компенсации дисперсии, основанные на управлении передатчиком или приемником излучения;
  • способы компенсации дисперсии, использующие нелинейные оптические эффекты для управления пространственно - временными характеристиками светового импульса.

Принцип  компенсации дисперсии, основанный на управлении пространственным распределением дисперсии волоконно-оптической линии связи заключается в том, что в ВОЛС между участками телекоммуникационного волокна устанавливаются устройства, дисперсия которых равна по величине и противоположна по знаку дисперсии предшествующего им участка телекоммуникационного ОК. Можно рассматривать хроматическую дисперсию как фазовый сдвиг между разными длинами волн сигнала. В компенсирующем волокне фазовый сдвиг постоянен, что предполагает только статический метод компенсации. В идеальном случае фазовый сдвиг спектральных компонент полностью компенсируется в устройстве - компенсаторе хроматической дисперсии. Этот принцип поясняет рис. 4.1.

 

 

 

 

 

Рис. 4.1. Применение устройства компенсации  дисперсии

                   

Большинство типов телекоммуникационного  волокна в рабочей области  спектра обладает положительной  дисперсией, поэтому для их компенсации  используются устройства с отрицательной  дисперсией.

Наиболее распространенными устройствами для компенсации дисперсии ВОЛС являются:

  • отрезки компенсирующего дисперсию волокна (DCF);
  • устройства на основе брэгговских дифракционных решеток с изменяющимся  периодом решетки;
  • интерферометрические устройства.

Класс устройств, основанных на управлении пространственным распределением дисперсии волоконно-оптической линии связи для обеспечения нулевого суммарного значения дисперсии для всей линии, является наиболее удобным и находит наибольшее практическое применение.

Ко второму классу относятся  устройства, использующие либо модуляцию  передаваемого сигнала, либо специальную  обработку сигналов на фотоприемнике  для восстановления информации. Наиболее широко в этом классе применяются  устройства компенсации дисперсии, основанные на внесении линейной частотной модуляции передаваемого сигнала (чирпировании сигнала), знак которой противоположен модуляции, возникающей в ОВ.

К классу нелинейно-оптических методов  компенсации хроматической дисперсии  относится инверсия спектра световых сигналов в середине линии связи. Принцип работы инверторов спектра основан на явлении обращения волнового фронта (ОВФ), которое заключается в преобразовании одной волны в другую с идентичным распределением амплитуды и фазы и с противоположным направлением распространения. ОВФ получают методом четырехволнового смешения [8]. В этом методе в нелинейной среде интерферируют четыре световых пучка. Три из них подаются извне: объектный пучок, который требуется обратить, и две опорные волны. Опорные пучки, распространяющиеся навстречу друг другу, имеют обычно плоский волновой фронт и одинаковую частоту, ту же, что и объектный пучок. Объектный пучок может направляться в среду с любого направления. Четвертый — генерируемый пучок — обращен по отношению к объектному. В результате прохождения устройства инверсии импульс сохраняет свою форму, но передний фронт становится длинноволновым, а задний фронт – коротковолновым. Инвертор устанавливается в середине линии связи, поэтому из-за дисперсии во второй половине линии восстанавливается первоначальная форма оптического импульса.

4.1.1. Оптическое волокно,  компенсирующее дисперсию.

Оптическое волокно с компенсацией дисперсии является основным компонентом  при статическом подавлении хроматической  дисперсии. Его отрицательная  хроматическая дисперсия в несколько раз превышает положительную хроматическую дисперсию одномодового волокна. Добавление участка волокна с компенсацией дисперсии определенной длины компенсирует дисперсию линии передачи, обращая ее в ноль. Отрицательная дисперсия, как правило, обеспечивается уменьшением диаметра сердцевины и слабым волноводным распространением. К сожалению, недостатком таких волокон со слабым каналированием света является увеличение затухания и потерь на изгибы.

Один из недостатков использования волокна DCF для компенсации дисперсии заключается в волновой зависимости хроматической дисперсии D(l). В линейном приближении эту зависимость описывает параметр S - наклон дисперсионной кривой. Компенсация дисперсии, например, статическим методом на одной длине волны приведет к неточной компенсации на других длинах волн в системах DWDM.

Для количественного сравнения  качества компенсации дисперсии  часто используют понятие добротности  компенсирующего волокна  [7]. Добротностью компенсирующего волокна называется отношение абсолютного значения дисперсии, выраженного в пс/нм/км к затуханию, выраженному в дБ/км. Добротность не единственный показатель качества компенсирующего дисперсию волокна. Необходимо учитывать, в частности, насколько высока чувствительность к потерям на изгибах. Поэтому, при использовании значения добротности для сравнения различных видов оптических волокон нужно стремиться к тому, чтобы измерять добротность в тех условиях, в которых ОВ будет реально работать.

Оптические волокна DCF с высоким показателем добротности используются как дополнительные элементы линии связи, они увеличивают потери в линии, примерно, на 30%. Так, для пролета длиной 300 км может потребоваться около 50 км волокна с компенсацией дисперсии, при этом дополнительные потери мощности составят 18 дБ.

Рис. 4.2. Поведение накопленной  дисперсии в линии (период 80 км SMF + DCF) с компенсацией дисперсии для  одной длины волны.

Для компенсации дисперсии применяется  также новый тип ОВ, названного оптическим волокном с обратной дисперсией (RDF). Волокно RDF обладает коэффициентом дисперсии примерно равным по величине и противоположным по знаку соответствующему параметру стандартного одномодового волокна. Измеренное значение потерь на изгиб в RDF волокне оказалось меньше, чем в стандартном ОВ. Это позволяет изготавливать оптические кабели с RDF волокном. Кабель на основе RDF волокна соединяется с ОК на основе стандартного ОВ примерно той же длины. Дисперсионный коэффициент такого соединения не превышает ±0,5пс/нм/км в полосе длин волн 1530нм - 1564нм. Поскольку затухание RDF волокна 0,25 дБ/км при затухании стандартного волокна 0,2 дБ/км, среднее затухание в линии равно 0,225 дБ/км. Еще одним преимуществом RDF волокна является меньшая по сравнению с DCF нелинейность.

Рассмотренные выше различные типы компенсирующих дисперсию волокон позволяют достаточно хорошо компенсировать дисперсию и наклон дисперсионной зависимости стандартного оптического волокна (SMF).

В настоящее время в большинстве  модулей компенсации дисперсии  используется DC волокно, т.к. такие модули не потребляют мощность, имеют малую стоимость и удобны в применении (обычно размещается на выходе оптического усилителя).

4.1.2. Компенсаторы на основе брэгговских  решеток с переменным периодом.

Компенсаторы на основе брэгговских  решеток с переменным периодом привлекают в последнее время большое внимание исследователей своими большими потенциальными возможностями. Волоконная брэгговская решетка FBG (fiber Bragg grating) - оптический элемент, основанный на периодическом изменении показателя преломления сердцевины или оболочки оптического волокна. Принцип работы компенсаторов на основе брэгговских решеток с переменным периодом поясняет рис. 4.3. Он основан на том, что компоненты с различной длиной волны отражаются от различных участков решетки и, таким образом, проходят различный путь. Решетки записываются (прочерчиваются) в волокне с использованием фоточувствительности определенных типов оптических волокон. Обычное кремниевое волокно при добавлении примеси германия становится чрезвычайно фоточувствительным. Подвергая это волокно воздействию ультрафиолетового света, можно вызвать изменения показателя преломления в сердцевине волокна. В таком волокне решетка может быть создана с помощью облучения волокна двумя интерферирующими ультрафиолетовыми пучками. Это заставляет интенсивность излучения изменяться периодически по длине волокна. Там, где интенсивность высокая, показатель преломления увеличивается, а где она мала, показатель остается без изменений [4].

Фазовый сдвиг в компенсаторах  на волоконных решетках зависит от модуляции интервалов между зонами с повышенным показателем преломления в решетке. Если эти интервалы возрастают вдоль волоконной решетки, то длинноволновая часть сигнала проникнет глубже в решетку, прежде чем полностью отразится. Это приводит к задержке длинноволновых составляющих относительно коротких. Если расстояние между коротковолновой и длинноволновой частями решетки составляет 1 мм, то длинноволновые составляющие будут задержаны приблизительно на 10 пс.

Рис. 4.3. Брэгговская решетка, предназначенная  для компенсации дисперсии.

Так как период решетки изменяется вдоль волокна, то и условия отражения  для различных спектральных компонент  выполняются на разных участках. Для  компенсации положительной дисперсии  стандартного одномодового волокна  используются решетки, а которых коротковолновые составляющие световой волны отражаются в точке, расположенной дальше от начала устройства, чем точка, в которой отражаются длинноволновые составляющие. Тем самым коротковолновые составляющие задерживаются относительно длинноволновых составляющих.

В идеале желательно получить решетку, которая вносит большую дисперсию  для широкого диапазона длин волн для применения в системах передачи WDM и DWDM. Максимальная задержка, которая может быть получена с помощью решетки, составляет 1 нс. Эта задержка соответствует произведению дисперсии, вносимой решеткой и длины волны, на которой она возникает. Следовательно, можно получить решетки, которые вносят большую дисперсию для малых диапазонов волн, 1000 пс/нм в диапазоне 1 нм, или малую дисперсию в больших диапазонах волн, например, 100 пс/нм в диапазоне 10 нм. Заметим, что 100 км стандартного волокна вносят общую дисперсию 1700 пс/нм. Поэтому на практике для того, чтобы использовать решетки с линейно изменяющемся периодом для оптического волокна длиной несколько сотен километров, они должны быть очень узкодиапазонными, т.е. необходимо использовать разные решетки для различных длин волн.

Поэтому решетки с линейно изменяющейся постоянной идеально подходят для компенсации  отдельных длин волн. Напротив, компенсирующее волокно (DCF) лучше подходит для компенсации широкого диапазона длин волн в системах WDM и DWDM. Однако, по сравнению с решетками с линейно изменяющейся постоянной, DCF вносят большие потери и дополнительные задержки из-за увеличивающихся нелинейностей.

Фазовый сдвиг, вызываемый волоконной решеткой, можно настраивать изменяя  интервалы между зонами с повышенным показателем преломления, изменяя  показатель преломления самого волокна  и воздействуя на оба эти фактора  одновременно. Действуя по отдельности, или одновременно, можно изменять положение точки отражения для конкретной длины волны в ОВ. Такие решетки с переменным периодом называются чирпированными.

Эти устройства могут быть компактными. Решетка длиной 5 см, в принципе, может  компенсировать дисперсию в системе длиной 300 км с внешней модуляцией и скоростью передачи 10 Гбит/с.

Но FBG имеют и существенные недостатки:

  • решетки изготавливаются фотоспособом из фоточувствительного ОВ, со временем под действием световых сигналов происходит нарушение решетки (размывание);
  • у большинства компенсаторов на основе волоконных решеток имеется недостаток, заключающийся в том, что сигнал с компенсированной дисперсией отражается в обратном направлении, поэтому для отделения входа от выхода нужно использовать оптический циркулятор;
  • для нормального функционирования устройства на основе FBG необходима стабилизация температурных условий, что увеличивает общую стоимость компенсатора.

4.1.3. Компенсаторы  хроматической  дисперсии   на основе планарных интерферометров  и микро-оптических устройств.

Некоторые оптические интерферометры, в частности эталоны Фабри - Перо, Жире - Турнуа и Маха - Цендера, обладают дисперсионными характеристиками, которые  могут быть использованы для компенсации  дисперсии ВОЛС.

Фазовый фильтр (all - phase filter) идеально передает свет на всех длинах волн в своем рабочем диапазоне и может сдвигать фазы на определенных длинах волн. Два важных примера представлены эталонами и кольцевыми резонаторами [7].

В хорошо известном эталоне Фабри - Перо свет курсирует в резонаторе, ограниченном двумя полупрозрачными зеркалами. Резонанс наступает при условии, что в полный путь света между зеркалами туда обратно d укладывается целое число длин волн l в среде с показателем преломления n, или 2d = Nl/n. Такие резонансные длины волн задерживаются резонатором, что приводит к их фазовому сдвигу относительно других длин волн. Однако эталон Фабри - Перо не является правильным фазовым фильтром, так как свет может покинуть его из любого из двух зеркал.

Менее известный эталон конструкции Жире - Турнуа (Gires - Tournois) действует как фазовый фильтр, так как заднее зеркало является полностью отражающим, и весь свет выходит из частично прозрачного переднего зеркала (см. рис. 4.4). Как и в эталоне Фабри-Перо резонансы возникают, когда полный путь света кратен целому числу длин волн. Свет на резонансных длинах волн испытывает фазовую задержку, проводя больше времени в резонансной полости в сравнении с другими длинами волн.

Рис. 4.4. Перестраиваемые оптические фазовые фильтры можно построить двумя способами: два фазовращателя помещают в кольцевой резонатор (слева), либо электростатически-управляемая мембрана служит частично пропускающим зеркалом в эталоне Жире-Турнуа (справа)

Информация о работе Реконструкция ВОЛС