Автор работы: Пользователь скрыл имя, 10 Ноября 2011 в 19:16, контрольная работа
В декартовой прямоугольной системе координат даны вершины пирамиды .
Найдите:
а) длину ребра ;
б) косинус угла между векторами и ;
в) уравнение ребра ;
г) уравнение грани С1; если А1 (-2,2,2),В1(1,-3.0), С1(6,2,4), D1(5,7,-1).
РОССИЙСКАЯ ФЕДЕРАЦИЯ
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Выполнил: Холбаев Ойбек Тошпулатович
Студент 1 курса
1 семестр
Фергана
2008
ЗАДАЧА
1.
В декартовой прямоугольной системе координат даны вершины пирамиды .
Найдите:
а) длину ребра ;
б) косинус угла между векторами и ;
в) уравнение ребра ;
г)
уравнение грани
С1; если А1 (-2,2,2),В1(1,-3.0),
С1(6,2,4), D1(5,7,-1).
Решение.
а) Найдем координаты вектора А1В1 по формуле
где - координаты точки А1, -координаты точки В1.
Итак ={1-(-2);-3-2;0-2}={3;-5;-2}. Тогда = = .
Итак, длина отрезка, (или длина векторе ) равна . Это и есть искомая длина ребра.
б) Координаты ={3;-5;-2} уже известны, осталось определить координаты вектора ={6- (-2); 2 - 2; 4 - 2}= {8,0; 2}.
Угол между векторами и вычислим по формуле
cos φ = (А1В1, А1С1)
|А1В1|·| А1С1|
где скалярое произведение векторов А1В1 и А1С1 равно ( , )=3·8+(-5)·0+(-2)=24+0-4=20,
| |= , | |= = .
Итак, cos φ = 20 = 10
·
в) Координаты точки А1(-2,2,2) обозначим соответственно Х0 = -2, У0 = 2, Z0 = 2, а координаты точки В1(1,-3,0) через X1 = 1, У1 = -3, Z1 = 0 и воспользуемся уравнением прямой и пространстве, проходящей через две точки:
.
Следовательно,
уравнение ребра
имеет вид
.
г) Обозначим координаты векторов , и через Х1=3, У1= -5, Z1= -2 и Х2=8, У2= 0, Z2=2 соответственно. Векторное произведение данных векторов определяется формулой
·A1C1 = {Y1·Z2-Y2·Z1;Z1·X2-Z2·X1;X1·Y2
=
{(-5)·2-0·(-2);-2·8-2·3;3·0-8·
Так как данный вектор перпендикулярен грани С1, то можно воспользоваться уравнением плоскости, проходящей через точку (Х0 У0, Z0) перпендикулярно вектору {А;В;С}, которое имеет вид A·(X-X0)+B·(Y-Y0)+С·(Z-Z0)=0.
Подставим координаты точки А1 (Хо= -2, У0=2, Z0=2) и координаты перпендикулярного вектора А= -10, В= -22, С=40 в это уравнение:
-
10 ( X + 2 ) - 22 (У – 2) т 40 ( Z- 2) - 0. Раскроем
скобки и приведем подобные члены - 10 х
-22 у + 40z + (-20 + 44-80)=0. Итак, уравнение
грани
,C1 имеет вид: -10х- 22у + 4О z-56=0 или
-5х- lly + 20z-28=0.
ЗАДАЧА
2.
Решите систему линейных уравнений
а) методом Крамера;
б) методом Гаусса;
Решение.
а) Решим данную систему уравнений с помощью формул Крамера (см.[2] глава 10. стр. 268). Рассмотрим произвольную систему трех линейных уравнений с тремя неизвестными:
Решение.
а)
Решим данную систему уравнений
с помощью формул Крамера ( см. [2]
глава 10, стр. 268).
Тогда , где
6) решим данную систему уравнений методом Гаусса. Метод Гаусса состоит в том, что с помощью элементарных преобразований система уравнении приводится к равносильной системе ступенчатого (или треугольного) вида из которой последовательно, начиная с последнего уравнения, легко находят все неизвестные системы.
Составим расширенную матрицу данной системы.
Поменяем
местами первую и вторую строки матрицы,
чтобы в ее левом верхнем углу
была единица. Получим матрицу.
Умножим каждый элемент первой строки матрицы на 4 и прибавим полученные числа к соответствующим элементам второй строки. Матрица примет вид.
=
Умножим каждый элемент первой строки матрицы на -3. и прибавим полученные числа к соответствующим элементам третьей строки. Получим:
=
Разделим каждый элемент второй строки матрицы на 4, чтобы второй элемент, стоящий на главной диагонали матрицы, стал равным 1.
Умножим каждый элемент второй строки матрицы на -8 и прибавим полученные числа к соответствующим элементам третьей строки:
Данная матрица соответствует системе уравнений , решение которой совпадает с решением исходной системы. Начинай с последнего уравнения, несложно найти все неизвестные.
Действительно, так как z= = и y z= , то y ·
Отсюда, y - = = = . Из x-z=1 имеем =z+1= +1=
Ответ:
x=
, y=
, z=
.
Элементы теории вероятности и математической статистики
Для решения задачи 3 см. [5] глава 1. § 1—5.
ЗАДАЧА
3.
На складе университета хранится 28 одинаковых упаковок писчей бумаги. Известно, что в четырех из них содержится бумага более низкого качества. Случайным образом выбирают три упаковки бумаги, Вычислить вероятность того, что среди них;
А) нет упаковок с бумагой более низкого качества,
Б)
есть одна упаковка
такой бумаги.
Решение.
Общее число возможных
элементарных исходов для данных испытаний
равно числу способов, которыми
можно извлечь 3 упаковки бумаги из
28 упаковок, то есть
= = = =13·9·28=3276 – числу сочетаний из 28 элементов по 3.
а) Подсчитаем число исходов, благоприятствующих интересующему нас событию (нет упаковок с бумагой более низкого качества). Это число исходов ровно числу способов, которыми можно извлечь 3 упаковки бумаги из 24 упаковок (столько упаковок содержит бумагу высшего сорта), то есть
= = = =11·23·8=2024
искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:
P1= = ≈0,62
б) Подсчитаем число исходов, благоприятствующих данному событию (среди трех упаковок бумаги ровно 1 упаковка содержит бумагу более низкого качества): две упаковки можно выбрать из 24 упаковок: = = = =276 способами, при этом одну упаковку нужно выбирать из четырех: = = =4 способами. Следовательно, число благоприятствующих исходов равно · =276·4=1104
Искомая вероятность равна отношению числа исходов, благоприятствующих данному событию, к числу всех элементарных исходов p2= = ≈0,34
Ответ:
а) p1 =0,62;
б) р2
=0,34.
ЗАДАЧА
4.
Магазин
получает электролампочки
с двух заводов,
причем доля первого завода составляет
25 %. Известно, что
доля брака на этих заводах равна соответственно
5 % и 10 % от всей выпускаемой продукции.
Продавец наугад берет одну лампочку.
Какова вероятность того,
что она окажется бракованной?
Решение: Обозначим через А событие - «лампочка окажется бракованной». Возможны следующие гипотезы о происхождении этой лампочки: H1-лампочка поступила с первого завода, H2-лампочка поступила со второго завода. Так как доля первого завода составляет 25 %, то вероятности этих гипотез равны соответственно p(H1)= =0,25; p(H2)= =0,75.
Условная вероятность того, что бракованная лампочка выпущена первым заводом – p(A/H1)= =0,05, вторым заводом - p(A/H2)= =0,10 искомую вероятность того, что продавец взял бракованную лампочку, находим по формуле полной вероятности
р(А)
= P(H1)· p(A/H1)+P(H2)·(A/H2)=0,25·0,
Ответ: р(А) = 0,0875.
Для
решения задачи
5 см. [5]глава
6 § 1—3, глава 7 § 1-2, глава
8 § J—3.
ЗАДАЧА
5.
Задан
закон распределения дискретной
случайной величены
X:
|
Информация о работе Контрольная работа по "Высшей Математике"