Автор работы: Пользователь скрыл имя, 14 Октября 2013 в 23:44, реферат
Логика высказываний является теорией тех логических связей высказываний, которые не зависят от внутреннего строения (структуры) простых высказываний.
Логика высказываний исходит из следующих двух допущений:
-всякое высказывание является либо истинным, либо ложным (принцип двузначности);
-истинностное значение сложного высказывания зависит только от истинностных значений входящих в него простых высказываний и характера их связи.
Введение …………………………………………………………………….....3
1. Логика высказываний………………………………………………….……5
2. Законы логики высказывания………………………………………….…..11
Заключение………………………………………………………………….....21
Список использованной литературы……………………………………..….22
Содержание
Введение ………………………………………………………
1. Логика высказываний……………………………
2. Законы логики высказывания…………
Заключение……………………………………………………
Список использованной литературы……………………………………..….22
Введение
Логика высказываний является теорией тех логических связей высказываний, которые не зависят от внутреннего строения (структуры) простых высказываний.
Логика высказываний исходит из следующих двух допущений:
-всякое высказывание является либо истинным, либо ложным (принцип двузначности);
-истинностное значение сложного высказывания зависит только от истинностных значений входящих в него простых высказываний и характера их связи.
На основе этих допущений ранее были даны строгие определения логических связок "и", "или", "если, то" и др. Эти определения формулировались в виде таблиц истинности и назывались табличными определениями связок. Соответственно, само построение логики высказываний, опирающееся на данные определения, называется табличным ее построением.
Согласно принятым определениям:
-конъюнкция истинна, когда оба входящих в нее высказывания истинны;
-дизъюнкция истинна, когда хотя бы одно из входящих в нее высказываний истинно;
-строгая дизъюнкция истинна, когда одно из входящих в нее высказываний истинно, а второе ложно;
-импликация истинна в трех случаях: ее основание и следствие истинны; основание ложно, а следствие истинно; и основание, и следствие ложны;
-эквивалентность истинна, когда два приравниваемых в ней высказывания оба истинны или оба ложны;
-отрицательное высказывание истинно, когда отрицаемое высказывание ложно, и наоборот.
С помощью таблиц истинности в случае любого сложного высказывания можно определить, при каких значениях истинности входящих в него простых высказываний это высказывание истинно, а при каких ложно.
1. Логика высказываний
Логика высказываний
– это определенная совокупность
формул, т.е. сложных высказываний, записанных
на специально сконструированном искусственно
-неограниченное множество переменных: А, В, С, ..., А1, В1, С1, ..., представляющих высказывания;
-особые символы для логических связок: & – "и", v – "или", V – "либо, либо", → – "если, то", ↔ – "если и только если", ~ – "неверно, что""
-скобки, играющие роль знаков препинания обычного языка. Чтобы использовать меньшее количество скобок, условимся, что операция отрицания выполняется первой, затем идут конъюнкция и дизъюнкция, и только после этого импликация и эквивалентность.
Формулам логики высказываний, образованным из переменных и связок, в естественном языке соответствуют предложения. К примеру, если А есть высказывание "Сейчас день", В – высказывание "Сейчас светло" и С – высказывание "Сейчас холодно", то формула:
А → В v С, или со всеми скобками: (А → (В v С)),
-представляет высказывание "Если сейчас день, то сейчас светло или холодно". Формула:
В & С → А, или ((В & С) → А),
-представляет высказывание "Если сейчас светло и холодно, то сейчас день". Формула:
~ В → ~ А, или ((~ В) → (~ А)),
-представляет высказывание "Если неверно, что сейчас светло, то неверно, что сейчас день" и т.п. Подставляя вместо переменных другие конкретные (истинные или ложные) высказывания, получим другие переводы указанных формул на обычный язык.
Формула, которой не соответствует осмысленное предложение, построена неправильно.
Таковы, в частности, формулы:
(А →), (& В), (A v ВС), (~ & ) и т.п.
Каждой формуле логики высказываний соответствует таблица истинности, показывающая, при каких подстановках конкретных высказываний в данную формулу она дает истинное сложное высказывание, а при каких ложное. Например, формула (~ В → ~ А) даст ложное высказывание, только если вместо В подставить ложное высказывание, а вместо А – истинное.
Всегда истинная формула логики высказываний, или тавтология, – это формула, дающая истинное высказывание при любых подстановках, в нее конкретных (т.е. истинных или ложных) высказываний.
Иными словами, внутренняя структура тавтологии гарантирует, что она всегда превратится в истинное высказывание, какими бы конкретными высказываниями мы ни заменяли входящие в нее переменные.
Всегда ложная формула, или логическое противоречие, всегда превращается влажное высказывание при подстановке конкретных высказываний вместо ее переменных.
Покажем для примера что формула:
(А – В) → (~ В → ~ А)
-является тавтологией. Для этого переберем варианты подстановок вместо переменных А и В конкретных высказываний. Таких вариантов, очевидно, четыре: оба подставляемых высказывания истинны, оба они ложны, первое из них истинно, а второе ложно, и первое ложно, а второе истинно.
В результирующей колонке таблицы встречается только значение "истинно", т.е. формула является всегда истинной.
А В А → В ~ В ~ А ~ В → ~ А (А → В) → (~ В → ~ А)
и и и л л и и
и л л и л и и
л и и л и л и
л л и и и л и
Нетрудно убедиться, например, что формула:
(А & → А)
-является всегда ложной, т.е. противоречием.
Множество тавтологий бесконечно.
Центральным понятием логики в целом и логики высказываний как ее части являются понятия логического закона и логического следования. Они могут быть определены через понятие тавтологии.
Логический закон логики высказываний – это тавтология данной логики. Иными словами, множество законов логики высказываний и множество ее тавтологий совпадают: каждый закон есть тавтология, и каждая тавтология есть закон. Это означает, что для установления того, является ли некоторая формула законом логики высказываний, достаточно с помощью таблиц истинности убедиться, является ли эта формула тавтологией. Логическим законом является, в частности, только что рассмотренная всегда истинна формула:
(А → В)(~ В → ~ А).
Таким образом, логический закон можно определить как выражение, содержащее только логические константы и переменные и являющееся истинным в любой (непустой) области объектов.
В обычном языке слово "тавтология" означает повторение того, что уже было сказано: "Жизнь есть жизнь", "Театр – это театр" и т.п.
Тавтологии бессодержательны и пусты, они не несут никакой информации. От них стремятся избавиться как от ненужного балласта, загромождающего речь и затрудняющего общение.
Иногда, однако, случается, что тавтология наполняется вдруг каким-то чужим содержанием. Попадая в определенный контекст, она как бы светит отраженным светом.
Слово "тавтология" широко используется для характеристики законов логики. В качестве логического термина оно получило строгие определения применительно к отдельным разделам логики.
В общем случае, логическая тавтология – это выражение, остающееся истинным независимо от того, о какой области объектов идет речь, или "всегда истинное выражение".
Все законы логики являются логическими тавтологиями. Если в формуле, представляющей закон, заменить переменные любыми постоянными выражениями соответствующей категории, эта формула превратится в истинное высказывание.
Например, в формулу "А или не-А", представляющую логический закон, вместо переменной А должны подставляться высказывания. Результаты таких подстановок: "Дождь идет или не идет", "Два плюс два равно нулю или не равно нулю", "Пегас существует или его нет" и тому подобное. Каждое из этих сложных высказываний является истинным. И какие бы дальнейшие высказывания ни подставлялись, результат будет тем же – полученное высказывание будет истинным.
Из тавтологии "Дождь идет или не идет" мы ничего не можем узнать о погоде. Тавтология "Неверно, что Пегас есть и его нет" ровным счетом ничего не говорит о существовании Пегаса. Ни одна тавтология не несет содержательной информации о мире.
Тавтология не описывает никакого реального положения вещей. Она совместима с любым таким положением. Немыслима ситуация, сопоставлением с которой тавтологию можно было бы опровергнуть.
Эти специфические особенности тавтологий пытались истолковать как несомненное доказательство отсутствия какой-либо связи законов логики с действительностью. Законы логики представляют собой априорные, известные до всякого опыта истины. Они не являются бессмысленными, но вместе с тем не имеют и содержательного смысла. Их невозможно ни подтвердить, ни опровергнуть ссылкой на опыт. Их функция – быть каркасом, строительными лесами нашего знания, указывать приемлемые преобразования выражений языка.
Идея об информационной пустоте логических законов является, однако, ошибочной. Ее сторонники крайне узко истолковывают опыт, способный подтверждать и опровергать научные утверждения и законы. Этот опыт сводится ими к фрагментарным, изолированным ситуациям или фактам. Последние достаточны для проверки истинности элементарных описательных утверждений типа "Идет дождь" или "Я иду быстро". Но они явно недостаточны для суждения об истинности абстрактных теоретических обобщений, опирающихся не на отдельные, разрозненные факты, а на совокупный, систематический опыт. Даже законы обычных наук нельзя обосновать простой ссылкой на факты и конкретику. Тем более это невозможно сделать в случае самых абстрактных из всех законов – законов логики. Они должны рассматриваться в своем генезисе и черпать свое обоснование из предельно широкого опыта мыслительной, теоретической деятельности. За законами логики стоит, конечно, опыт, и в этом они сходны со всеми иными научными законами. Но опыт не в форме каких-то изолированных, доступных наблюдению ситуаций, а конденсированный опыт всей истории человеческого познания.
Логические законы составляют основу человеческого мышления. Они определяют, когда из одних высказываний логически вытекают другие, и представляют собой тот невидимый железный каркас, на котором держится последовательное рассуждение и без которого оно превращается в хаотическую, бессвязную речь. Без логического закона нельзя понять, что такое логическое следование, а тем самым – и что такое доказательство.
Правильное, или, как обычно говорят, логичное мышление – это мышление по законам логики, по тем абстрактным схемам, которые фиксируются ими. Отсюда понятна вся важность данных законов.
Логические законы объективны и не зависят от сознания и воли человека. Они не являются результатом соглашения между людьми, некоторой специальной или стихийно сложившейся конвенции. Они не являются и порождением некоего "мирового духа" или "абстрактной идеи", как полагали некоторые философы. Власть законов логики над человеком, их обязательная для правильного мышления сила обусловлена тем, что они есть отображение реального мира, многовекового опыта его познания и преобразования человеком.
Подобно всем иным научным законам, логические законы являются универсальными и необходимыми. Они действуют всегда и везде, распространяясь в равной мере на всех людей и на любые эпохи. Присущая этим законам необходимость в каком-то смысле даже более настоятельна и непреложна, чем природная, или физическая, необходимость. Невозможно даже представить, чтобы логически необходимое стало иным. Если что-то противоречит законам природы и является физически невозможным, то никакой инженер, при всей его одаренности, не сумеет реализовать это. Но если нечто противоречит законам логики и является логически невозможным, то не только инженер – даже бог не смог бы воплотить это в жизнь.
Логических законов бесконечно много, однако не все они в равной мере употребительны. Далее будут рассмотрены некоторые, наиболее простые и часто используемые из них.
2. Законы логики высказывания
1. Закон противоречия.
Из всех логических законов самым известным является, без сомнения, закон противоречия. И вместе с тем в истории логики не было периода, когда бы этот закон не оспаривался и когда бы дискуссии вокруг него совершенно затихали.
Закон противоречия говорит о противоречащих друг другу высказываниях, т.е. о высказываниях, одно из которых является отрицанием другого. К ним относятся, например, высказывания "Луна – спутник Земли" и "Луна не является спутником Земли", "Трава – зеленая" и "Неверно, что трава зеленая" и т.п. В одном из противоречащих высказываний что-то утверждается, в другом – это же самое отрицается.