Автор работы: Пользователь скрыл имя, 11 Сентября 2013 в 13:19, реферат
Модель - объект или описание объекта, системы для замещения (при определенных условиях предложениях, гипотезах) одной системы (т.е. оригинала) другой системы для изучения оригинала или воспроизведения его каких - либо свойств. Модель - результат отображения одной структуры на другую. Отображая физическую систему (объект) на математическую систему (например, математический аппарат уравнений) получим физико - математическую модель системы или математическую модель физической системы. В частности, физиологическая система - система кровообращения человека, подчиняется некоторым законам термодинамики и описав эту систему на физическом (термодинамическом) языке получим физическую, термодинамическую модель физиологической системы. Если записать эти законы на математическом языке, например, выписать соответствующие термодинамические уравнения, то получим математическую модель системы кровообращения.
Моделирование систем
4.1. Основные понятия моделирования
Модель - объект или описание
объекта, системы для
Модели, если отвлечься от областей, сфер их применения, бывают трех типов: познавательные, прагматические и инструментальные.
Познавательная модель - форма организации и представления знаний, средство соединение новых и старых знаний. Познавательная модель, как правило, подгоняется под реальность и является теоретической моделью.
Прагматическая модель - средство
организации практических
Инструментальная модель - является
средством построения, исследования
и/или использования
Познавательные отражают существующие, а прагматические - хоть и не существующие, но желаемые и, возможно, исполнимые отношения и связи.
По уровню, "глубине" моделирования модели бывают эмпирические - на основе эмпирических фактов, зависимостей, теоретические - на основе математических описаний и смешанные, полуэмпирические - использующие эмпирические зависимости и математические описания.
Математическая модель М описывающая ситему S (x1,x2,...,xn; R), имеет вид: М=(z1,z2,...,zm; Q), где zi, i=1,2,...,m, Q, R - множества отношений над X - множеством входных, выходных сигналов и состояний системы и Z - множеством описаний, представлений элементов и подмножеств X, соответственно.
Основные требования к модели: наглядность построения; обозримость основных его свойств и отношений; доступность ее для исследования или воспроизведения; простота исследования, воспроизведения; сохранение информации, содержавшиеся в оригинале (с точностью рассматриваемых при построении модели гипотез) и получение новой информации.
Проблема моделирования состоит из трех задач:
построение модели (эта задача менее формализуема и конструктивна, в том смысле, что нет алгоритма для построения моделей);
исследование модели (эта задача более формализуема, имеются методы исследования различных классов моделей);
использование модели (конструктивная и конкретизируемая задача).
Модель М называется
Модель - динамическая, если среди xi есть временной параметр, т.е. она отображает систему (процессы в системе) во времени.
Модель - дискретная, если она описывает поведение системы только в дискретные моменты времени.
Модель - непрерывная, если она описывает поведение системы для всех моментов времени из некоторого промежутка времени.
Модель - имитационная, если она
предназначена для испытания
или изучения, проигрывания возможных
путей развития и поведения
объекта путем варьирования
Модель - детерминированная, если
каждому входному набору
Можно говорить о различных режимах использования моделей - об имитационном режиме, о стохастическом режиме и т. д.
Модель включает в себя: объект О, субъект (не обязательный) А, задачу Z, ресурсы B, среду моделирования С: М=.
Свойства любой модели таковы:
конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
упрощенность: модель отображает только существенные стороны объекта;
приблизительность: действительность отображается моделью грубо или приблизительно;
адекватность: модель успешно описывает моделируемую систему;
информативность: модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модели.
Жизненный цикл моделируемой системы:
Сбор информации об объекте, выдвижение гипотез, предмодельный анализ;
Проектирование структуры и состава моделей (подмоделей);
Построение спецификаций модели, разработка
и отладка отдельных
Исследование модели - выбор метода исследования и разработка алгоритма (программы) моделирования;
Исследование адекватности, устойчивости, чувствительности модели;
Оценка средств моделирования (затраченных ресурсов);
Интерпретация, анализ результатов моделирования и установление некоторых причинно - следственных связей в исследуемой системе;
Генерация отчетов и проектных (народно - хозяйственных) решений;
Уточнение, модификация модели, если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью моделирования.
Основными операциями используемыми над моделями являются:
Линеаризация. Пусть М=М(X,Y,A), где X - множество входов, Y - выходов, А - состояний системы. Схематически можно это изобразить:
X ® A ® Y
Если X, Y, A - линейные пространства (множества), а j, y - линейные операторы, то система (модель) называется линейной. Другие системы (модели) - нелинейные. Нелинейные системы трудно поддаются исследованию, поэтому их часто линеаризуют - сводят к линейным каким-то образом.
Идентификация. Пусть М=М(X,Y,A), A={ai },
ai=(ai1,ai2,...,aik) - вектор состояния объекта
(системы). Если вектор ai зависит от
некоторых неизвестных
Агрегирование. Операция состоит в преобразовании (сведении) модели к модели (моделям) меньшей размерности (X, Y, A).
Декомпозиция. Операция состоит в разделении системы (модели) на подсистемы (подмодели) с сохранением структур и принадлежности одних элементов и подсистем другим.
Сборка. Операция состоит в преобразовании системы, модели, реализующей поставленную цель из заданных или определяемых подмоделей (структурно связанных и устойчивых).
Макетирование. Эта операция состоит в апробации, исследовании структурной связности, сложности, устойчивости с помощью макетов или подмоделей упрощенного вида, у которых функциональная часть упрощена (хотя вход и выход подмоделей сохранены).
Экспертиза, экспертное оценивание. Операция или процедура использования опыта, знаний, интуиции, интеллекта экспертов для исследования или моделирования плохо структурируемых, плохо формализуемых подсистем исследуемой системы.
Вычислительный эксперимент. Это эксперимент, осуществляемый с помощью модели на ЭВМ с целью распределения, прогноза тех или иных состояний системы, реакции на те или иные входные сигналы. Прибором эксперимента здесь является компьютер (и модель!).
Модели и моделирование
Обучение (как моделям, моделированию, так и самих моделей).
Познание и разработка теории исследуемых систем - с помощью каких - то моделей, моделирования, результатов моделирования.
Прогнозирование (выходных данных, ситуаций, состояний системы).
Управление (системой в целом, отдельными подсиситемами системы, выработка управленческих решений и стратегий).
Автоматизация (системы или отдельных подсистем системы).
В базовой четверке
Например, при имитационном
моделировании (при отсутствии
строгого и формально записанно
Основные функции компьютера при моделировании систем:
выполнять роль вспомогательного средства для решения задач, решаемых обычными вычислительными средствами, алгоритмами, технологиями;
выполнять роль средства постановки и решения новых задач, не решаемых традиционными средствами, алгоритмами, технологиями;
выполнять роль средства конструирования компьютерных обучающе - моделирующих сред;
выполнять роль средства моделирования для получения новых знаний;
выполнять роль "обучения" новых моделей (самообучающиеся модели).
Компьютерное моделирование - основа представления знаний в ЭВМ (построения различных баз знаний). Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ.
Разновидностью компьютерного
моделирования является
Компьютерное моделирование,
вычислительный эксперимент
Компьютерное моделирование, от постановки задачи - до получения результатов, проходит следующие этапы.
1.Постановка задачи.
Формулировка задачи.
Определение цели моделирования и их приоритетов.
Сбор информации о системе, объекте моделирования.
Описание данных (их структуры, диапазона, источника и т. д.).
2. Предмодельный анализ.
Анализ существующих аналогов и подсистем.
Анализ технических средств моделирования (ЭВМ, периферия).
Анализ программного обеспечения(языки программирования, пакеты программ, инструментальные среды).
Анализ математического
Анализ задачи (модели).
3.Разработка структур данных.
Разработка входных и выходных спецификаций, форм представления данных.
Проектирование структуры и состава модели (подмоделей).
4. Исследование модели.
Выбор методов исследования подмоделей.
Выбор, адаптация или разработка алгоритмов, их псевдокодов.
Сборка модели в целом из подмоделей.
5.Идентификация модели, если в этом есть необходимость.
6. Формулировка используемых критериев адекватности, устойчивости и чувствительности модели.
7. Программирование (проектирование программы).
8. Выбор метода тестирования и тестов (контрольных примеров).
9. Кодирование на языке программирования(написание команд).
Комментирование программы.
Тестирование и отладка.
Синтаксическая отладка.
Семантическая отладка (отладка логической структуры).
10. Тестовые расчеты, анализ результатов тестирования.
11. Оптимизация программы.
12. Оценка моделирования.
Оценка средств моделирования.
Оценка адекватности моделирования.
Оценка чувствительности модели.
Оценка устойчивости модели.
13. Документирование.
Описание задачи, целей.
Описание модели, метода, алгоритма.
Описание среды реализации.
Описание возможностей и ограничений.
Описание входных и выходных форматов, спецификаций.
Описание тестирования.
Описание инструкций пользователю.
14. Сопровождение.
Анализ использования, периодичности использования, количества пользователей, типа использования (диалог, автономно и др.), анализ отказов во время использования модели.
Обслуживание модели, алгоритма, программы и их эксплуатация.
Расширение возможностей: включение новых функций или изменение режимов моделирования, в том числе и под модифицированную среду.
Нахождение, исправление скрытых ошибок в программе, если таковые найдутся.
15. Использование модели.
Лабораторная работа №6
4.2. Модели и моделирование систем
Математическое и компьютерное моделирование.
Данный период характерен
необходимостью моделирования