Автор работы: Пользователь скрыл имя, 04 Октября 2012 в 14:53, курсовая работа
В рамках данной работы будут рассмотрены аппаратные реализации параллельных вычислений:
многопроцессорные системы;
кластерные системы;
облачные вычисления;
векторные процессоры;
параллельные вычисления с использованием графических процессоров (CUDA).
Введение…………………………………………………………………………. ..3стр.
1 Общие сведения о параллельных вычислениях………………………………4 стр.
2 Многопроцессорные системы …………………………………………………5 стр.
2.1 Общие требования, предъявляемые к многопроцессорным системам 5стр.
2.2 Многопроцессорные системы с общей памятью ……………………...9 стр.
2.3 Многопроцессорные системы с локальной памятью ………………..19 стр.
2.4 Области применения многопроцессорных систем …………………..21стр.
3 Кластерные системы …………………………………………………………..22 стр.
3.1 Отказоустойчивые кластеры …………………………………………..25 стр. 3.2 Высокопроизводительные кластеры ……………………………………..27 стр.
4 Облачные вычисления ………………………………………………………...29 стр.
4.1 "Облачные" вычисления - достоинства и недостатки ………………31 стр.
5 Векторные процессоры ……………………………………………………….35 стр.
5.1 Структуры типа “память-память” и “регистр-регистр”…………… 42стр.
5.2 Обработка длинных векторов и матриц …………………………….43 стр.
6 Параллельные вычисления с использованием графических процессоров (CUDA) …………………………………………………………………………...44 стр.
Заключение ………………………………………………………………………51 стр.
Содержание
Введение…………………………………………………………
1 Общие сведения о параллельных вычислениях………………………………4 стр.
2 Многопроцессорные системы …………………………………………………5 стр.
2.1 Общие
требования, предъявляемые к
2.2 Многопроцессорные системы с общей памятью ……………………...9 стр.
2.3 Многопроцессорные системы с локальной памятью ………………..19 стр.
2.4 Области применения многопроцессорных систем …………………..21стр.
3 Кластерные системы ……………………………
3.1 Отказоустойчивые кластеры …………………………………………..25 стр. 3.2 Высокопроизводительные кластеры ……………………………………..27 стр.
4 Облачные вычисления ………………………………………………………...29 стр.
4.1 "Облачные" вычисления - достоинства и недостатки ………………31 стр.
5 Векторные процессоры ……………………………………………………….35 стр.
5.1 Структуры типа “память-
5.2 Обработка длинных векторов
6 Параллельные вычисления
с использованием графических процессоров
(CUDA) …………………………………………………………………………..
Заключение ………………………………………………………………………51 стр.
Введение
Многие задачи требуют вычислений с большим количеством операций, которые занимают значительные ресурсы даже современной техники, более того, можно с уверенностью считать, что каких бы скоростей ни достигла вычислительная техника, всегда найдутся задачи, на решение которых потребовалось значительное время. Многие из таких сложных задач требуют, чтобы результат был получен за как можно меньшее время или даже строго ограниченное. К таким задачам, например, относится прогнозирование погоды, обработка изображений и распознание образов при управлении техникой. С другой стороны представляет большую техническую проблему уменьшение времени исполнения каждой операции в микропроцессоре.
Очевидным способом увеличить скорость вычислений было бы применение не одного вычислительного устройства, а нескольких, работающих совместно над решением одной задачи. Такой подход носит название параллельных вычислений.
В рамках
данной работы будут
1 Общие сведения о параллельных вычислениях
Параллельные вычисления - такой способ организации компьютерных вычислений, при котором программы разрабатываются как набор взаимодействующих вычислительных процессов, работающих параллельно (одновременно).
Несмотря на кажущуюся простоту решения, оно является подчас весьма нетривиальной задачей по проектированию вычислительной техники и разработки алгоритмов. Первая проблема кроется в том, что для того, чтобы задачу можно было решить с помощью параллельных вычислений алгоритм её решения должен допускать распараллеливание, мало того, далеко не каждая задача может быть решена параллельным алгоритмом. Другой же, не менее важной проблемой является построение системы, на которой бы возможна была реализация параллельных вычислений.
Параллельные вычисления возможны тогда, когда отсутствует необходимость в завершении предыдущей операции для начала следующей. В качестве примера можно взять следующее выражение:
для того чтобы произвести второе умножение не требуется знать результата первого, следовательно, оба умножения можно произвести параллельно, и только после этого произвести сложение. Очевидно, не каждое вычисление можно распараллелить. Выражение
можно вычислить только последовательно, сначала первое умножение, затем второе, и только после этого — сложение.
2 Многопроцессорные системы
Многопроцессорные системы - использование пары или большего количества физических процессоров в одной компьютерной системе. Термин также относится к способности системы поддержать больше чем один процессор и/или способность распределить задачи между ними.
Потребность решения сложных прикладных задач с большим объемом вычислений и принципиальная ограниченность максимального быстродействия «классических» – по схеме фон Неймана - ЭВМ привели к появлению многопроцессорных вычислительных систем (МВС). Использование таких средств вычислительной техники позволяет существенно увеличивать производительность ЭВМ при любом существующем уровне развития компьютерного оборудования. При этом, однако, необходимо «параллельное» обобщение традиционной - последовательной - технологии решения задач на ЭВМ. Так, численные методы в случае МВС должны проектироваться как системы параллельных и взаимодействующих между собой процессов, допускающих исполнение на независимых процессорах. Применяемые алгоритмические языки и системное программное обеспечение должны обеспечивать создание параллельных программ, организовывать синхронизацию и взаимоисключение асинхронных процессов и т.п.
2.1 Общие требования, предъявляемые к многопроцессорным системам
Отношение стоимость / производительность. Появление любого нового направления в вычислительной технике определяется требованиями компьютерного рынка. Поэтому у разработчиков компьютеров нет одной единственной цели. Большая универсальная вычислительная машина (мейнфрейм) или суперкомпьютер стоят дорого. Для достижения поставленных целей при проектировании высокопроизводительных конструкций приходится игнорировать стоимостные характеристики. Суперкомпьютеры фирмы Cray Research и высокопроизводительные мейнфреймы компании IBM относятся именно к этой категории компьютеров. Другим крайним примером может служить низкостоимостная конструкция, где производительность принесена в жертву для достижения низкой стоимости. К этому направлению относятся персональные компьютеры различных клонов IBM PC. Между этими двумя крайними направлениями находятся конструкции, основанные на отношении стоимость/ производительность, в которых разработчики находят баланс между стоимостными параметрами и производительностью. Типичными примерами такого рода компьютеров являются миникомпьютеры и рабочие станции.
Для сравнения различных
Надежность и отказоустойчивость. Важнейшей характеристикой вычислительных систем является надежность. Повышение надежности основано на принципе предотвращения неисправностей путем снижения интенсивности отказов и сбоев за счет применения электронных схем и компонентов с высокой и сверхвысокой степенью интеграции, снижения уровня помех, облегченных режимов работы схем, обеспечение тепловых режимов их работы, а также за счет совершенствования методов сборки аппаратуры. Отказоустойчивость - это такое свойство вычислительной системы, которое обеспечивает ей, как логической машине, возможность продолжения действий, заданных программой, после возникновения неисправностей. Введение отказоустойчивости требует избыточного аппаратного и программного обеспечения. Направления, связанные с предотвращением неисправностей и с отказоустойчивостью, - основные в проблеме надежности. Концепции параллельности и отказоустойчивости вычислительных систем естественным образом связаны между собой, поскольку в обоих случаях требуются дополнительные функциональные компоненты. Поэтому, собственно, на параллельных вычислительных системах достигается как наиболее высокая производительность, так и, во многих случаях, очень высокая надежность. Имеющиеся ресурсы избыточности в параллельных системах могут гибко использоваться как для повышения производительности, так и для повышения надежности. Структура многопроцессорных и многомашинных систем приспособлена к автоматической реконфигурации и обеспечивает возможность продолжения работы системы после возникновения неисправностей. Следует помнить, что понятие надежности включает не только аппаратные средства, но и программное обеспечение. Главной целью повышения надежности систем является целостность хранимых в них данных.
Масштабируемость. Масштабируемость представляет собой возможность наращивания числа и мощности процессоров, объемов оперативной и внешней памяти и других ресурсов вычислительной системы. Масштабируемость должна обеспечиваться архитектурой и конструкцией компьютера, а также соответствующими средствами программного обеспечения. Добавление каждого нового процессора в действительно масштабируемой системе должно давать прогнозируемое увеличение производительности и пропускной способности при приемлемых затратах. Одной из основных задач при построении масштабируемых систем является минимизация стоимости расширения компьютера и упрощение планирования. В идеале добавление процессоров к системе должно приводить к линейному росту ее производительности. Однако это не всегда так. Потери производительности могут возникать, например, при недостаточной пропускной способности шин из-за возрастания трафика между процессорами и основной памятью, а также между памятью и устройствами ввода/вывода. В действительности реальное увеличение производительности трудно оценить заранее, поскольку оно в значительной степени зависит от динамики поведения прикладных задач. Возможность масштабирования системы определяется не только архитектурой аппаратных средств, но зависит от заложенных свойств программного обеспечения. Масштабируемость программного обеспечения затрагивает все его уровни от простых механизмов передачи сообщений до работы с такими сложными объектами как мониторы транзакций и вся среда прикладной системы. В частности, программное обеспечение должно минимизировать трафик межпроцессорного обмена, который может препятствовать линейному росту производительности системы. Аппаратные средства (процессоры, шины и устройства ввода/вывода) являются только частью масштабируемой архитектуры, на которой программное обеспечение может обеспечить предсказуемый рост производительности. Важно понимать, что простой переход, например, на более мощный процессор может привести к перегрузке других компонентов системы. Это означает, что действительно масштабируемая система должна быть сбалансирована по всем параметрам.
Совместимость и мобильность программного обеспечения. Концепция программной совместимости впервые в широких масштабах была применена разработчиками системы IBM/360. Основная задача при проектировании всего ряда моделей этой системы заключалась в создании такой архитектуры, которая была бы одинаковой с точки зрения пользователя для всех моделей системы независимо от цены и производительности каждой из них. Огромные преимущества такого подхода, позволяющего сохранять существующий задел программного обеспечения при переходе на новые (как правило, более производительные) модели были быстро оценены как производителями компьютеров, так и пользователями и начиная с этого времени практически все фирмы-поставщики компьютерного оборудования взяли на вооружение эти принципы, поставляя серии совместимых компьютеров. Следует заметить, однако, что со временем даже самая передовая архитектура неизбежно устаревает и возникает потребность внесения радикальных изменений архитектуру и способы организации вычислительных систем.
В настоящее время одним из наиболее важных факторов, определяющих современные тенденции в развитии информационных технологий, является ориентация компаний-поставщиков компьютерного оборудования на рынок прикладных программных средств. Это объясняется, прежде всего, тем, что для конечного пользователя, в конце концов, важно программное обеспечение, позволяющее решить его задачи, а не выбор той или иной аппаратной платформы. Переход от однородных сетей программно совместимых компьютеров к построению неоднородных сетей, включающих компьютеры разных фирм- производителей, в корне изменил и точку зрения на саму сеть: из сравнительно простого средства обмена информацией она превратилась в средство интеграции отдельных ресурсов - мощную распределенную вычислительную систему, каждый элемент которой (сервер или рабочая станция) лучше всего соответствует требованиям конкретной прикладной задачи. Этот переход выдвинул ряд новых требований. Прежде всего, такая вычислительная среда должна позволять гибко менять количество и состав аппаратных средств и программного обеспечения в соответствии с меняющимися требованиями решаемых задач. Во-вторых, она должна обеспечивать возможность запуска одних и тех же программных систем на различных аппаратных платформах, т.е. обеспечивать мобильность программного обеспечения. В третьих, эта среда должна гарантировать возможность применения одних и тех же человеко-машинных интерфейсов на всех компьютерах, входящих в неоднородную сеть. В условиях жесткой конкуренции производителей аппаратных платформ и программного обеспечения сформировалась концепция открытых систем, представляющая собой совокупность стандартов на различные компоненты вычислительной среды, предназначенных для обеспечения мобильности программных средств в рамках неоднородной, распределенной вычислительной системы.
2.2 Многопроцессорные системы с общей памятью
Требования, предъявляемые современными процессорами к полосе пропускания памяти можно существенно сократить путем применения больших многоуровневых кэшей. Тогда, если эти требования снижаются, то несколько процессоров смогут разделять доступ к одной и той же памяти. Начиная с 1980 года эта идея, подкрепленная широким распространением микропроцессоров, стимулировала многих разработчиков на создание небольших мультипроцессоров, в которых несколько процессоров разделяют одну физическую память, соединенную с ними с помощью разделяемой шины. Из-за малого размера процессоров и заметного сокращения требуемой полосы пропускания шины, достигнутого за счет возможности реализации достаточно большой кэш-памяти, такие машины стали исключительно эффективными по стоимости. Во-первых разработках подобного рода машин удавалось разместить весь процессор и кэш на одной плате, которая затем вставлялась в заднюю панель, с помощью которой реализовывалась шинная архитектура. Современные конструкции позволяют разместить до четырех процессоров на одной плате. В такой машине кэши могут содержать как разделяемые, так и частные данные. Частные данные - это данные, которые используются одним процессором, в то время как разделяемые данные используются многими процессорами, по существу обеспечивая обмен между ними. Когда кэшируется элемент частных данных, их значение переносится в кэш для сокращения среднего времени доступа, а также требуемой полосы пропускания. Поскольку никакой другой процессор не использует эти данные, этот процесс идентичен процессу для однопроцессорной машины с кэш-памятью. Если кэшируются разделяемые данные, то разделяемое значение реплицируется и может содержаться в нескольких кэшах. Кроме сокращения задержки доступа и требуемой полосы пропускания такая репликация данных способствует также общему сокращению количества обменов. Однако кэширование разделяемых данных вызывает новую проблему: когерентность кэш-памяти.