Автор работы: Пользователь скрыл имя, 04 Октября 2012 в 14:53, курсовая работа
В рамках данной работы будут рассмотрены аппаратные реализации параллельных вычислений:
многопроцессорные системы;
кластерные системы;
облачные вычисления;
векторные процессоры;
параллельные вычисления с использованием графических процессоров (CUDA).
Введение…………………………………………………………………………. ..3стр.
1 Общие сведения о параллельных вычислениях………………………………4 стр.
2 Многопроцессорные системы …………………………………………………5 стр.
2.1 Общие требования, предъявляемые к многопроцессорным системам 5стр.
2.2 Многопроцессорные системы с общей памятью ……………………...9 стр.
2.3 Многопроцессорные системы с локальной памятью ………………..19 стр.
2.4 Области применения многопроцессорных систем …………………..21стр.
3 Кластерные системы …………………………………………………………..22 стр.
3.1 Отказоустойчивые кластеры …………………………………………..25 стр. 3.2 Высокопроизводительные кластеры ……………………………………..27 стр.
4 Облачные вычисления ………………………………………………………...29 стр.
4.1 "Облачные" вычисления - достоинства и недостатки ………………31 стр.
5 Векторные процессоры ……………………………………………………….35 стр.
5.1 Структуры типа “память-память” и “регистр-регистр”…………… 42стр.
5.2 Обработка длинных векторов и матриц …………………………….43 стр.
6 Параллельные вычисления с использованием графических процессоров (CUDA) …………………………………………………………………………...44 стр.
Заключение ………………………………………………………………………51 стр.
Удобнее в CUDA и доступ к памяти. Программный код в графических API выводит данные в виде 32-х значений с плавающей точкой одинарной точности (RGBA значения одновременно в восемь render target) в заранее предопределённые области, а CUDA поддерживает scatter запись - неограниченное число записей по любому адресу. Такие преимущества делают возможным выполнение на GPU некоторых алгоритмов, которые невозможно эффективно реализовать при помощи методов GPGPU, основанных на графических API.
Также, графические API в обязательном порядке хранят данные в текстурах, что требует предварительной упаковки больших массивов в текстуры, что усложняет алгоритм и заставляет использовать специальную адресацию. А CUDA позволяет читать данные по любому адресу. Ещё одним преимуществом CUDA является оптимизированный обмен данными между CPU и GPU. А для разработчиков, желающих получить доступ к низкому уровню (например, при написании другого языка программирования), CUDA предлагает возможность низкоуровневого программирования на ассемблере.
Недостатки CUDA.
Один из немногочисленных
недостатков CUDA - слабая переносимость.
Эта архитектура работает только на видеочипах
этой компании, да ещё и не на всех, а начиная
с серии GeForce 8 и 9 и соответствующих Quadro,
ION и Tesla. NVIDIA приводит цифру в 90 миллионов
CUDA-совместимых видеочипов.
Модель памяти
в CUDA отличается возможностью побайтной
адресации, поддержкой как gather, так и scatter.
Доступно довольно большое количество
регистров на каждый потоковый процессор,
до 1024 штук. Доступ к ним очень быстрый,
хранить в них можно 32-битные целые или
числа с плавающей точкой.
Каждый поток имеет доступ к следующим типам памяти:
Глобальная память — самый большой объём памяти, доступный для всех мультипроцессоров на видеочипе, размер составляет от 256 мегабайт до 1.5 гигабайт на текущих решениях (и до 4 Гбайт на Tesla). Обладает высокой пропускной способностью, более 100 гигабайт/с для топовых решений NVIDIA, но очень большими задержками в несколько сот тактов. Не кэшируется, поддерживает обобщённые инструкции load и store, и обычные указатели на память.
Локальная память — это небольшой объём памяти, к которому имеет доступ только один потоковый процессор. Она относительно медленная — такая же, как и глобальная.
Разделяемая память — это 16-килобайтный (в видеочипах нынешней
архитектуры) блок памяти с общим доступом
для всех потоковых процессоров в мультипроцессоре.
Эта память весьма быстрая, такая же, как
регистры. Она обеспечивает взаимодействие
потоков, управляется разработч
Память констант — область памяти объемом 64 килобайта (то же — для нынешних GPU), доступная только для чтения всеми мультипроцессорами. Она кэшируется по 8 килобайт на каждый мультипроцессор. Довольно медленная — задержка в несколько сот тактов при отсутствии нужных данных в кэше.
Текстурная память — блок памяти, доступный для чтения всеми мультипроцессорами. Выборка данных осуществляется при помощи текстурных блоков видеочипа, поэтому предоставляются возможности линейной интерполяции данных без дополнительных затрат. Кэшируется по 8 килобайт на каждый мультипроцессор. Медленная, как глобальная — сотни тактов задержки при отсутствии данных в кэше.
Естественно, что глобальная, локальная, текстурная и память констант — это физически одна и та же память, известная как локальная видеопамять видеокарты. Их отличия в различных алгоритмах кэширования и моделях доступа. Центральный процессор может обновлять и запрашивать только внешнюю память: глобальную, константную и текстурную.
Заключение
В данной
работы были рассмотрены
У всех есть свои преимущества и недостатки. Каждый метод может найти применение в той или иной отрасли.