Автор работы: Пользователь скрыл имя, 25 Апреля 2013 в 10:51, реферат
Понятие интеграл непосредственно связано с интегральным исчислением – разделом математики, занимающимся изучением интегралов, их свойств и методов вычисления. Вместе с дифференциальным исчислением интегральное исчисление составляет основу математического анализа.
,
где F`(x)=f(x).
Для Лейбница определенный интеграл был суммой всех бесконечно малых дифференциалов.
.
Первая трактовка отвечала технике вычисления определенных интегралов при помощи первообразной подынтегральной функции, вторая - потому, что в приложениях определенный интеграл появлялся как предел известного вида суммы (интегральной суммы).
Примерно до последней
четверти XVIII века первая трактовка
понятия определенного
К началу XVIII века были
установлены правила
Непосредственное вычисление
как предела интегральной
суммы столкнулось с многими
трудностями. Естественно, что
это обстоятельство укреплению
точки зрения Лейбница не
Истолкование обычного определенного интеграла по Лейбницу опиралось на понятие о бесконечно малых, от которого математики XVIII века хотели освободить математический анализ. Это также способствовало укреплению точки зрения Ньютона. Факт этот хорошо подтверждался тем, как Леонард Эйлер использовал понятие об интегральной сумме. Эйлер не возражал против приближенного вычисления определенных интегралов при помощи соответствующих интегральных сумм. Но рассматривать определенный интеграл как предел интегральной суммы он не мог. В этом случае все слагаемые интегральной суммы становились бесконечно малыми, т. е., с точки зрения Эйлера, были нулями.
Историческая справка. В 1963 г. 23-летний Пауль Эйлер окончил курс теологии в Базельском университете. Но учёных теологов было в те годы больше, чем требовалось, и лишь в 1701 г. он получил официальную должность священника сиротского дома в Базеле. 19 апреля 1706 г. пастор Пауль Эйлер женился на дочери священника. А 15 апреля 1707 г. у них родился сын, названный Леонардом.
Начальное обучение будущий учёный прошел дома под руководством отца, учившегося некогда математике у Якоба Бернулли. Добрый пастор готовил старшего сына к духовной карьере, однако занимался с ним и математикой – как в качестве развлечения, так и для развития логического мышления. Мальчик увлёкся математикой, стал задавать отцу вопросы один сложнее другого.
Когда у Леонардо проявился интерес к учёбе, его направили в Базельскую латинскую гимназию – под надзор бабушки.
20 октября 1720 г. 13-летний
Леонард Эйлер стал студентом
факультета искусств
Став студентом, он легко
усваивал учебные предметы, отдавая
предпочтение математике. И немудрено,
что способный мальчик вскоре
обратил на себя внимание Бернулли.
Он предложил юноше читать математические
мемуары, а по субботам приходить
к нему домой, чтобы совместно
разбирать непонятное. В доме своего
учителя Эйлер познакомился и
подружился с сыновьями Бернулли
– Николаем и Даниилом, также
увлечённо занимавшимися
Эйлер отличался феноменальной работоспособностью. Он просто не мог не заниматься математикой или её приложениями. В 1735 г. Академия получила задание выполнить срочное и очень громоздкое астрономическое вычисление. Группа академиков просила на эту работу три месяца, а Эйлер взялся выполнить работу за 3 дня – и справился самостоятельно. Однако перенапряжение не прошло бесследно: он заболел и потерял зрение на правый глаз. Однако учёный отнёсся к несчастью с величайшим спокойствием: “Теперь я меньше буду отвлекаться от занятий математикой”, - философски заметил он.
До этого времени Эйлер был известен лишь узкому кругу учёных. Но двухтомное сочинение “ Механика, или наука о движении, в аналитическом изложении ”, изданное в 1736 г., принесло ему мировую славу. Эйлер блестяще применил методы математического анализа к решению проблем движения в пустоте и в сопротивляющейся среде. “Тот , кто имеет достаточные навыки в анализе, сможет всё увидеть с необычайной лёгкостью и без всякой помощи прочитает работу полностью”, - заканчивает Эйлер своё предисловие к книге.
Дух времени требовал аналитического
пути развития точных наук, применения
дифференциального и
Конечно, и до последней
четверти XVIII века концепция Ньютона
сталкивалась с трудностями. В этот
период встречались элементарные функции,
первообразные которых не могут
быть выражены через элементарные функции.
Знали математики и некоторые
несобственные интегралы, в том
числе и расходящиеся. Но такого
рода факты были единичными и установившейся
эффективной концепции
С 70-х годов XVIII века решение задач аналитической механики, физики и других дисциплин потребовало значительное развитие понятия определенного интеграла. Особое значение приобретают двойные и тройные интегралы (Эйлер, Лагранж, Лаплас и др.).
Это было время, когда великие
идеи Ньютона и Лейбница были опубликованы
сравнительно недавно и современный
математический анализ только создавался.
Мощные методы, которые принесли с
собой эти идеи, находили применение
во всех отраслях точного знания. Применение
это шло рука об руку с развитием
самого анализа, часто указывая пути
и направления, по которым должно
развиваться новое исчисление. Это
была, пожалуй, единственная по своей
интенсивности эпоха
Разработка приемов вычисления
двойных и тройных интегралов
показала, что вычислять эти интегралы
так, как вычисляли обычный
Короче говоря, разработка
способов вычисления новых видов
определенного интеграла
В связи с этим возник вопрос
о существовании пределов интегральных
сумм, слагаемые которых были бы
бесконечно малыми. В первой четверти
XIX века понятие бесконечно малой
оказалось необходимым и для
изучения и сопоставления свойств
непрерывных и разрывных
Новая постановка задач обоснования математического анализа ясно показывала, что дело не только в признании и применении бесконечно малых - это делали и раньше! - но прежде всего в научном истолковании их содержания и обоснованном на этом использовании их в алгоритмах математического анализа. Однако, чтобы это сделать надо было преодолеть господствовавшее в XVIII веке узкое толкование понятия предела, разработать общую теорию пределов.
Изучение разрывных функций
и сопоставление их с функциями
непрерывными заставило признать то,
что ранее считалось
Коши преодолел и вторую ограничительную тенденцию в принятой до него трактовке понятия предела. Он признал, что переменная может приближаться к своему пределу не только монотонно, но и колеблясь, порой принимая значения, равные её пределу. Это обстоятельство придало теории Коши необходимую общность и исключительную гибкость. Мы до сих пор следуем пути, намеченному Огюстеном Луи Коши, с теми усовершенствованиями, которые были внесены во второй половине XIX века К. Вейерштрассом.
Работы Коши и Вейерштрасса завершили создание классического математического анализа, Тем самым подведя итог многовекового развития интегрального исчисления.
Список литературы
Большакова А. А. Три кризиса в развитии математики. Дипломная работа; Астрахань: АГПИ, 1996.
Детская энциклопедия для среднего и старшего возраста. Т.2; М.: Просвещение, 1965.
Математическая энциклопедия. Ред. Виноградова. Т.2; М.: Сов. Энциклопедия, 1979.
Фихтенгольц Г.М. Основы математического анализа. Т.1; М.: Наука, 1968.