Автор работы: Пользователь скрыл имя, 14 Мая 2013 в 19:58, реферат
Основной задачей дифференциального исчисления является нахождение производной f’(x) или дифференциала df=f’(x)dx функции f(x). В интегральном исчислении решается обратная задача. По заданной функции f(x) требуется найти такую функцию F(x), что F’(х)=f(x) илиdF(x)=F’(x)dx=f(x)dx.
Основной задачей
дифференциального исчисления я
Таким образом, основной задачей интегрального исчисления является восстановление функции F(x) по известной производной (дифференциалу) этой функции. Интегральное исчисление имеет многочисленные приложения в геометрии, механике, физике и технике. Оно дает общий метод нахождения площадей, объемов, центров тяжести и т. д..
Определение. Функция F(x), , называется первообразной для функцииf(x) на множестве Х, если она дифференцируема для любого и F’(x)=f(x) или dF(x)=f(x)dx.
Теорема. Любая непрерывная на отрезке [a; b] функция f(x) имеет на этом отрезке первообразную F(x).
Теорема. Если F1(x) и F2(x) – две различные первообразные одной и той же функцииf(x) на множестве х , то они отличаются друг от друга постоянным слагаемым, т. е. F2(x)=F1x)+C, где С – постоянная.
Определение. Совокупность F(x)
- (1)
В формуле (1) f(x)dx называется подынтег
Рассмотрим свойства неопределенного интеграла, вытекающие из его определения.
1. Производная из неопределенного интеграла равна подынтегральной функции, дифференциал неопределенного интеграла равен подынтегральному выражению:
и .
2. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:
3. Постоянный множитель а (а≠0) можно выносить за знак неопределенного интеграла:
4. Неопределенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от этих функций:
5. Если F(x) – первообразная функции f(x), то:
6 (инвариантность формул интегрирования). Любая формула интегрирования сохраняет свой вид, если переменную интегрирования заменить любой дифференцируемой функцией этой переменной:
где u – дифференцируемая функция.
Приведем основные правила интегрирования функций.
I.
II.
III.
IV.
V.
VI.
Приведем таблицу основных неопределенных интегралов. (Отметим, что здесь, как и в дифференциальном исчислении, буква u может обозначать как независимую переменную (u=x), так и функцию от независимой переменной (u=u(x)).)
1. (n≠-1).
2. (a >0, a≠1).
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14. (a≠0).
15. (a≠0).
16. (|u| > |a|).
17. (|u| < |a|).
18.
19.
Интегралы 1 – 17 называют табличными.
Некоторые из приведенных
выше формул таблицы
Интегрирование
подстановкой (замена переменной). Пусть требуется вычислить интеграл
, который не является табличным. Суть
метода подстановки состоит в том, что
в интеграле
переменную х заменяют переменной t по формуле x=φ(t), откуда dx=φ’(
Теорема. Пусть функция x=φ(t) определена и дифференцируема на некотором множестве Т и пусть Х – множество значений этой функции, на котором определена функция f(x). Тогда если на множестве Х функция f(x) имеет первообразную, то на множестве Т справедлива формула:
- (2)
Формула (1) называется формулой замены переменной в неопределенном интеграле.
Интегрирование по частям. Метод интегрирования по частям следует из формулы дифференциала произведения двух функций. Пусть u(x) и v(x) – две дифференцируемые функции переменной х. Тогда:
d(uv)=udv+vdu. – (3)
Интегрируя обе части равенства (3), получаем:
Но так как , то:
- (4)
Соотношение (4) называется формулой интегрирования по частям. С помощью этой формулы отыскание интеграла . Применять ее целесообразно, когда интеграл в правой части формулы (4) более прост для вычисления, нежели исходный.
В формуле (4) отсутствует произвольная постоянная С, так как в правой части этой формулы стоит неопределенный интеграл, содержащий произвольную постоянную.
Приведем некоторые
часто встречающиеся типы
I. Интегралы вида , , (Pn(x) – многочлен степени n, k – некоторое число). Чтобы найти эти интегралы, достаточно положить u=Pn(x) и применить формулу (4) n раз.
II. Интегралы вида , , , , (Pn(x) – многочлен степени n относительно х). Их можно найти по частым, принимая за u функцию, являющуюся множителем при Pn(x).
III. Интегралы вида , (a, b – числа). Они вычисляются двукратным интегрированием по частям.
5. Разложение дробной рациональной функции на простейшие дроби.
Рациональной дробью R(x) называется дробь, числителем и знаменателем которой являются многочлены, т. Е. всякая дробь вида:
Если степень многочлена
в числителе больше или равна
степени многочлена в
Всякую неправильную
рациональную дробь можно
где R(x) – многочлен-частное (целая часть) дроби ; Pn(x) – остаток (многочлен степениn < m).
6. Интегрирование простейших дробей. Интегрирование рациональных дробей.
Интегрирование простейших дробей. Простейшей дробью называется правильная рациональная дробь одного из следующих четырех типов:
1)
2) (n≥2);
3)
4) (n≥2).
Здесь А, a, p, q, M, N – действительные числа, а трехчлен не имеет действительных корней, т. е. p2/4-q < 0.
Простейшие дроби первого
и второго типов интегрируются
непосредственно с помощью
Интеграл от простейшей
дроби третьего типа
Интегрирование рациональных дробей.
Разложение рациональной дроби на простейшие дроби. Всякую правильную рациональную дробь можно представить в виде суммы конечного числа простейших рациональных дробей первого – четвертого типов. Для разложения на простейшие дроби необходимо разложить знаменатель Qm(x) на линейные и квадратные множители, для чего надо решить уравнение:
- (5)
Теорема. Правильную рациональную дробь , где , можно единственным образом разложить на сумму простейших дробей:
- (6)
(A1, A2, …, Ak, B1, B2, …, B1, M1, N1, M2, M2, …, Ms, Ns – некоторые действительные числа).
Метод
неопределенных коэффициентов. Суть метода неопределенных коэффициентов
состоит в следующем. Пусть дано разложение
правильной рациональной дроби
по формуле (6) на простейшие дроби с неопределенными
коэффициентами. Приведем простейшие
дроби к общему знаменателю Qm(x) и приравняем
многочлен, получившийся в числителе,
многочлену Pn(x).
Метод
частных значений. При нахождении неопределенных
коэффициентов вместо того, чтобы сравнивать
коэффициенты при одинаковых степенях х, можно дать переменной хнесколько частных значений
(по числу неопределенных коэффициентов)
и получить таким образом систему уравнений
относительно неопределенных коэффициентов.
Особенно выгодно применять этот метод
в случае, корни знаменателя рациональной
дроби
просты и действительны. Тогда оказывается
удобным последовательно полагать равным
каждому из корней знаменателя.
Правило интегрирования рациональных дробей. Для того чтобы проинтегрировать рациональную дробь, необходимо выполнить следующие действия:
1) если рассматриваемая рациональная дробь - неправильная (k≥m), представить ее в виде суммы многочлена и правильной рациональной дроби:
где n < m; R(x) – многочлен;
2) если рассматриваемая рациональная дробь - правильная (n < m), представить ее в виде суммы простейших рациональных дробей по формуле (6);
3) интеграл от рациональной дроби представить в виде суммы интегралов от целой части и от соответствующих простейших дробей и вычислить эти интегралы.
Интегралы вида Универсальная подстановка. Будем рассматривать интегралы вида:
- (7)
при условии, что они не являются табличными. Вычислить их можно различными методами, изложенными ранее. Иногда бывает достаточно преобразовать подынтегральное выражение, использовав тригонометрические формулы, применить методы «подведения» множителя под знак дифференциала, замены переменной или интегрирования по частям.
Для вычисления интеграла
вида (7) существует общая
Интегралы
вида
(m, n є Z, m ≥ 0, n ≥ 0). Если
хотя бы одно из чисел m и n – нечетное,
то, отделяя от нечетной степени один сомножитель
и выражая с помощью формулы sin2x+cos2x=1 оставшую
Интегралы
вида
,
, (n є N, n > 1). Эти интегралы вычисляются подстановками tgx= t и ctgx=t
Если t=tgx, то x=arctgt, . Тогда:
.
Последний интеграл при n ≥ 2 является интегралом от неправильной рациональной дроби, которая вычисляется по правилу интегрирования рациональных дробей.
Аналогично если t=ctgx, то x=arcctgt, , откуда:
Интегралы вида (m, n є R).Они вычисляются путем разложения подынтегральной функции на слагаемые по формулам:
8.Интегрирование
иррациональных выражений.
Интегралы вида (m1, n1, m2, n2, … - целые числа). В этих интегралах подынтегральная функция рациональна относительно переменной интегрирования и радикалов от х. Они вычисляются подстановкой x=ts, где s – общий знаменатель дробей , , … При такой замене переменной все отношения = r1, = r2, … являются целыми числами, т. е. интеграл приводится к рациональной функции от переменной t:
Интегралы вида (m1, n1, m2, n2, … - целые числа). Эти интегралы подстановкой:
где s – общий знаменатель дробей , , …, сводятся к рациональной функции от переменной t.
Интегралы вида Для вычисления интеграла I1 выделяется полный квадрат под знаком радикала:
и применяется подстановка:
, dx=du.
В результате этот интеграл сводится к табличному:
В числителе интеграла I2 выде
где I1 – вычисленный выше интеграл.
Вычисление интеграла I3 своди
Интеграл вида Частные случаи вычисления интегралов данного вида рассмотрены в предыдущем пункте. Существует несколько различных приемов их вычисления. Рассмотрим один из таких приемов, основанный на применении тригонометрических подстановок.
Квадратный трехчлен ax2+bx+c п
Интеграл подстановкой
u=ksint (или u=kcos
сводится к интегралу от рациональной функции относительно sint и cost.
Интегралы вида (m, n, p є Q, a, b є R). Рассматриваемые интегралы, называемые интегралами от дифференциального бинома , выражаются через элементарные функции только в следующих трех случаях:
1) если p є Z, то применяется подстановка:
x=ts,
где s – общий знаменатель дробей m и n;
2) если Z, то используется подстановка:
a+bxn=ts,
где s – знаменатель дроби
3) если Z, то применяется подстановка:
ax-n+b=ts,
где s – знаменатель дроби
9. Понятие определенного интеграла, его геометрический смысл.
Определение. Если существует конечный передел интегральной суммы (8)