Решение задач теории упругости с помощью специализированных систем компьютерной математики

Автор работы: Пользователь скрыл имя, 17 Января 2013 в 09:48, задача

Описание работы

Цель работы: научиться решать определенные задачи теории упругости, используя выбранные для моделирования системы конечно-элементного анализа. Сделать выводы о точности решения данных систем, на примере типовых задач теории упругости, сравнив его с решением полученным аналитически. Рассмотреть и сравнить системы по таким критериям, как удобство моделирования и наглядность полученного решения. Сделать выводы.
Для достижения цели необходимо решить следующие задачи:
Освоить основы теории упругости.
Рассмотреть типовые задачи теории упругости и изучить методы решения некоторых из них. В частности, задач Ламе для толстостенного полого цилиндра и полой сферы. Решить данные задачи.
Выбрать и изучить лучшие из систем конечно-элементного анализа. Уметь работать в этих системах на уровне, позволяющем решить данные задачи.

Содержание работы

Введение……………………………………………………………………………….2
Глава I. Основные положения теории упругости. Метод конечных элементов. Постановки задач.
Перемещения, напряжения и деформации……………………………………4
Метод конечных элементов………………………………………………….. 6
1.3 Задача Ламе о толстостенном цилиндре. Аналитическое решение…………9
1.4 Задача Ламе о полой сфере. Аналитическое решение ……………………..13
Глава II. Программное обеспечение и описание его возможностей.
2.1 ABAQUS ……………...…………………………...…………………………..18
2.2 ANSYS………………………………………. ………………………………..21
Глава III. Примеры решения задач.
3.1 Задача Ламе о толстостенном цилиндре ….……………………...…………23
3.2 Задача Ламе о полой сфере…….……………………………………………..29
3.3 Растяжение пластины с вырезами……………………………………………37
Заключение…………………………………………………………………………...49
Список использованной литературы……………………………………………….51