Автор работы: Пользователь скрыл имя, 15 Декабря 2013 в 18:03, шпаргалка
Работа содержит ответы на вопросы для экзамена по "Высшей математике".
30 Асимптоты графика функций
при исследовании графика функции на бесконечность, т.е. при x®+¥ и x®-¥, а так же вблизи точек разрыва часто оказывается, что график сколь угодно близко приближается к той или иной прямой, т.е. асимптоте.
Прямая х=х0 – вертикальная асимптота графика функции y=f(x), если хотя бы один из пределов или равен ± ¥. Нахождение вертикальных асимптот: 1) точки разрыва и граничные точки на области определения 2) вычисляем односторонний предел при х стремящимся к этим точкам.
Прямая y=a – горизонтальная асимптота графика y=f(x), при х®±¥, если .
Прямая y=kx+b называется наклонной асимптотой к графику y=f(x) при х®±¥, если саму функцию y=f(x) можно представить в виде f(x)=kx+b+a(x), где .
Схема нахождения: вычисляем , если этот предел не существует или равен бесконечности, то функция не имеет наклонной асимптоты. Вычисляем , если его нет или он бесконечен, то асимптоты нет.
31 Схема исследования функции и исследование её графика
1. Область определения функции, промежутки непрерывности, точки разрыва, вертикальные асимптоты
2. точки пересечения с осями.
3. чётность/нечётность
4. периодичность
5. промежутки монотонности и экстремумы
6. Выпуклости, точки перегиба
7. наклонные асимптоты
32 Формула Тейлора
Пусть функция y=f(x) определена в некоторой окрестности точки х0 и имеет в этой точке производные (n+1) порядка. Тогда для любого х в (x0-d;x0+d) найдется такое x(кси)Î(х0;х), такая что справедлива формула:
- многочлен Тейлора, остаточный член в формуле Лагранжа.
Формула Маклорена: называют формулу Тейлора при х0=0.
33.функция нескольких переменных.
Предположим, что задано множество D упорядоченных пар чисел. Если каждой паре из множества D по некоторому правилу сопоставить единственную переменную zÎZ, то говорят, что на множестве D задана функция z=f(x;y).
34 Предел функции двух переменных.
Введём понятие дельта окрестности точки M0(x0;y0). M(x;y)ÎUd(M0), .
Определение: пусть функция Z=f(x;y) определена в некоторой окрестности точки М0, за исключением быть может самой точки М0. число А называется пределом функции z=f(x;y) при х®х0, у®у0. M(x;y)®M0(x0,y0).
Если для любого E>0 существует d>0, такое что для всех х¹х0, у¹у0 и удовлетворяет => |f(x,y)-A|<E
Теорема: Пусть функция f(M) и g(M) определены на одном и том же множестве D и имеют следующий предел , а , тогда функции g(M)±f(M); g(M)*f(M); g(M)/f(M), при f(M)¹0, так же имеют пределы, которые соответственно равны A±B, A*B, A/B.
Функция z=f(M) называется бесконечно малой при M®M0. Если , то тогда функция может быть представлена в виде: Z(M)=A+a(M)
Определение: Пусть функция определена в некоторой окрестности точки М0. функция f(M) называется непрерывной в точке М0, если существует предел функции в этой точке и он равен значению функции в этой точке
Определение: функция, непрерывная в каждой точке некоторой области называется непрерывной на всей этой области.
Определение: Точки в которых нарушается непрерывность называются точками разрыва.
Функция, z=f(x,y) называется непрерывной в точке М0, если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.
36, 37 Частные производные
Рассмотрим функцию z=f(M) в некоторой окрестности точки М, придадим переменной х в М некоторое приращение, зафиксировав при этом у. От точки М перейдём к точке М1: М(x;у)®М1(х+Dх;у), тогда соответствующее приращение функции DxZ=∫f( х+Dх;у)-f(x;y) называется частным приращением по х в точке М.
Если существует , то говорят о том, что существует частная производная , соответственно частная производная по y: .
Если Zx’ определена в окрестности точки М и существует производная этой функции по переменной х, то это производная второго порядка.
Если существует частная производная по у, то её называют смешанной производной второго порядка.
Теорема: Если существуют смешанные производные второго порядка Zxy’’ и Zyx’’, в некоторой окрестности точки М, и непрерывны в самой точке М, то они равны между собой в этой точке.
Замечание:
38Понятие дифференцируемости
Пусть Z=f(M) определена в некоторой окрестности точки М.
Определение: функция Z=f(M) называется
дифференцируемой в
точке М (х;у), если её
полное приращение может
быть представлено в
виде: DZ=ADx+BDy+a(Dx;Dy)Dx+b(Dx;Dy)
Теорема о связи между дифференцируемостью и непрерывностью: Пусть Z=f(M) дифференцируема в точке М (х;у), тогда она непрерывна в этой точке.
Док-во:
так как функция
Z дифференцируема
в точке М, то её полное
приращение м.б. представлено
в виде: DZ=ADx+BDy+a(Dx;Dy)Dx+b(Dx;Dy)
39. Теорема необходимое
условие дифференцируемости:
Если Z=f(M) дифференцируема
в точке М(х;у), то она
имеет в этой точке частные
производные, причем
. Док-во: т.к. функция
дифференцируема в точке
М, то её приращение
может быть представлено
в виде DZ=ADx+BDy+a(Dx;Dy)Dx+b(Dx;Dy)
Теорема достаточное условие дифференцируемости: если Z=f(M) имеет частные производные в окрестности точки М и эти производные непрерывны в самой точке М. то функция дифференцируема в этой точке.
Следствие: из непрерывности частных производных следует непрерывность самой функции.
40 Производные сложных функций
Пусть Z=f(x;y) каждая из переменных в свою очередь является функцией от переменной t: x=x(t), y=y(t). Тогда функция Z=f(x(t);y(t)) является сложной функцией с независимым аргументом t, а х и у – промежуточные переменные.
Теорема: если функции x=x(t) y=y(t) дифференцируемы в точке t, а Z=f(x;y) дифференцируема в точке М(х;у), то функция Z=f(x(t);y(t)) дифференцируема в точке t и производная вычисляется: .
41 Дифференциал функции
Если Z=f(M) дифференцируема в точке М (х;у), то её приращение может быть представлено в виде DZ=ADx +BDy+a(Dx;Dy)Dx+b(Dx;Dy)Dy.
Определение: (dz) дифференциалом дифференцируемой функции Z в точке М называется линейная относительно в Dx и Dу часть полного приращения функции в точке М, т.е. dZ=ADx+BDy.
В правой части DZ=ADx +BDy+a(Dx;Dy)Dx+b(Dx;Dy)Dy третье и четвертое слагаемые являются бесконечно малыми функциями, по этому можно записать приближённое равенство: DZ»dZ, что используется при приближённом вычислении.
Дифференциал второго порядка:
42 Производная по направлению и градиент
рассмотрим функцию Z=f(M) в точке М(х;у), функция определена в окрестности этой точки. Единичные вектор l={cosa;cosb}, где a и b - углы между вектором и осями. Для характеристики скорости изменения функции в точке М в направлении вектора l вводится понятие производной по направлению.
Через точку М(х;у) проводим прямую L , параллельную вектору l, на прямой возьмём точку М1 так. Чтобы направление вектора MM1 и вектора l совпадали. |MM1|=Dl, Dl=ÖDx2+Dy2. значит Z получит полное приращение DZ=f(x+Dx;y+Dy)-f(x;y). Предел отношения DZ к Dl при стремлении Dl к нулю называется производной функции Z в точке М по направлению вектора l. .
Определение: Градиентом функции Z=f(M) в точке М(х;у) называется вектор, координаты которого равны частным производным в точке М. gradZ={Zx’(M);Zy’(M)}.
Замечание: используя обозначение градиента производная по направлению может быть записана как: . Градиент показывает направление наибыстрейшего роста функции в данной точке.
43 Экстремум функции двух переменных
Пусть Z=f(M) определена в некоторой окрестности точки M0(x0;y0).
Определение: Функция Z=f(x;y), имеет в точке М0 локальный максимум/минимум, если существует такая окрестность точки М0. в которой для каждой точки М из этой окрестности выполняется неравенство: f(M)£f(M0)- максимум / f(M)³f(M0)- минимум.
Из определения следует, что если Z имеет экстремум в точке М0, то полное приращение может быть записано: DZ=f(M)-f(M0), DZ£0- для максимума и DZ³0- для минимума.
Теорема необходимое условие для локального экстремума: Если Z=f(x;y), имеет экстремум в точке М0, и в этой точке существуют частные производные первого порядка, то они равны нулю.
Док-во: зафиксируем одну из переменных у=у0, тогда Z-функция одной переменной(зависит только от х) и она имеет производную в точке х0 и экстремум в точке х0, тогда по необходимому условию экстремума для функции одной переменной: j’(x0)=0 => fx’(x0;y0)=0.
Теорема достаточное условие локального экстремума: Пусть в точке М0 возможного экстремума и некоторой её окрестности функция Z=f(x;y) имеет частные производные второго порядка. Обозначим: Составим матрицу: , обозначим D= , тогда:
Если D>0, то точка М0 – является точкой локального экстремума,
Если D<0. то в точке М0 – экстремума нет,
Если D>0, A>0, М0 – точка минимума,
Если D>0, A<0, М0 – точка максимума.
44 Условный экстремум
условным экстремумом функции Z=f(x;y) называется экстремум этой функции при условии, что х и у связаны уравнением j(х;у)=0 – уравнением связи.
Если одна переменная может быть однозначно выражена через другую, то y=g(x) подставляем в функцию Z, и обычным способом находим экстремум функции одной переменной. Если это не возможно, то в общем случае задача на отыскание условного экстремума состоит в исследовании на обычный экстремум вспомогательной функции u, где u(x;y)=f(x;y)-lj(x;y), где l - неизвестный параметр =const.
Теорема необходимое условие условного экстремума: Чтобы точка М0 была точкой условного экстремума необходимо чтобы в ней выполнялось: , где функция u – функция Лагранжа, l - множитель Лагранжа.
45 Минимум и максимум функции двух переменных
Чтобы найти мин. и макс. функции в замкнутой области необходимо: 1) найти точку возможного экстремума. Принадлежащей данной области, вычислить значение функции Z; 2) найти условные экстремумы на границах области, вычислить в них значение функции; 3) вычислить значение функции в вершинах, если область их имеет.
46 Неопределённый интеграл
Определение: Если функция F(x) – первообразная для f(x) на промежутке (a;b), то множество функций F(x)+C – неопределённый интеграл от f(x).
∫f(x)dx=F(x)+C, где f(x) – подынтегральная функция, f(x)dx – подынтегральное выражение, dx – переменная интегррования.
48. Основные свойства неопределённого интеграла:
1) Производная от неопределенного интеграла = подынтегральной функции.
2) Дифференциал от неопределённого интеграла = подынтегральному выражению.
3) Постоянный множитель м.б. вынесен из под знака интерала.
4) Интеграл от алгебраической суммы/разности функций = алгебраической сумме/разности интегралов. Справедливо для любого конечного количества слогаемых.
47 Таблица основных интегралов