Автор работы: Пользователь скрыл имя, 05 Сентября 2012 в 21:01, курсовая работа
Теория массового обслуживания опирается на теорию вероятностей и математическую статистику. Первоначальное развитие теории массового обслуживания связано с именем датского ученого А.К. Эрланга(1878-1929),с его трудами в области проектирования и эксплуатации телефонных станций.
ВВЕДЕНИЕ 3
1 ПОСТАНОВКА ЗАДАЧ МАССОВОГО ОБСЛУЖИВАНИЯ 4
1.1 Общие понятие теории массового обслуживания 4
1.2 Моделирование систем массового обслуживания 9
1.3 Графы состояний СМО 16
1.4 Случайные процессы 17
2 УРАВНЕНИЯ, ОПИСЫВАЮЩИЕ СИСТЕМЫ 20
МАССОВОГО ОБСЛУЖИВАНИЯ
Уравнения Колмогорова 20
Процессы «рождения – гибели» 25
Экономико-математическая модель системы массового 28
обслуживания. Решение задачи с помощью прокладных программ
ЗАКЛЮЧЕНИЕ 36
СПИСОК ИСПОЛЬЗУЕМОЙЛИТЕРАТУРЫ 37
Из множества разновидностей случайных процессов наибольшее распространение в коммерческой деятельности получили такие процессы, для которых в любой момент времени характеристики процесса в будущем зависят только от его состояния в настоящий момент и не зависят от предыстории — от прошлого. Например, возможность получения с завода «Кристалл» ликероводочной продукции зависит от наличия ее на складе готовой продукции, т.е. его состояния в данный момент, и не зависит от того, когда и как получали и увозили в прошлом эту продукцию другие покупатели.
Такие случайные
процессы называются процессами без
последствия, или марковскими, в
которых при фиксированном
Марковские
случайные процессы делятся на два
класса: процессы с дискретными и
непрерывными состояниями. Процесс
с дискретными состояниями
Процесс, протекающий в этой системе, состоит в том, что система случайным образом переходит скачком из одного дискретного состояния в другое.
Процессы с непрерывными состояниями отличаются непрерывным плавным переходом из одного состояния в другое. Эти процессы более характерны для технических устройств, нежели для экономических объектов, где обычно лишь приближенно можно говорить о непрерывности процесса (например, непрерывном расходовании запаса товара), тогда как фактически всегда процесс имеет дискретный характер. Поэтому далее мы будем рассматривать только процессы с дискретными состояниями.
Марковские случайные процессы с дискретными состояниями в свою очередь подразделяются на процессы с дискретным временем и процессы с непрерывным временем. В первом случае переходы из одного состояния в другое происходят только в определенные, заранее фиксированные моменты времени, тогда как в промежутки между этими моментами система сохраняет свое состояние. Во втором случае переход системы из состояния в состояние может происходить в любой случайный момент времени.
На практике процессы с непрерывным временем встречаются значительно чаще, поскольку переходы системы из одного состояния в другое обычно происходят не в какие-то фиксированные моменты времени, а в любые случайные моменты времени.
Для описания
процессов с непрерывным
2 УРАВНЕНИЯ ОПИСЫВАЮЩИЕ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ
2.1 Уравнения Колмогорова
Рассмотрим математическое
Проведем анализ системы в момент времени t, задав малое приращение времени Δt, и найдем вероятность р1 (t+ Δt) того, что система в момент времени (t+ Δt) будет находиться в состоянии S1 которое достигается разными вариантами:
а) система в момент t с вероятностью p1(t) находилась в состоянии S1 и за малое приращение времени Δt так и не перешла в другое соседнее состояние — ни в S0, ни b S2. Вывести систему из состояния S1 можно суммарным простейшим потоком c интенсивностью (λ10 +λ12), поскольку суперпозиция простейших потоков также является простейшим потоком. На этом основании вероятность выхода из состояния S1 за малый промежуток времени Δ t приближенно равна (λ10 +λ12)* Δ t. Тогда вероятность невыхода из этого состояния равна [1 -(λ10 +λ12)* Δ t].B соответствии с этим вероятность того, что система останется в состоянии Si на основании теоремы умножения вероятностей, равна:
б) система находилась в соседнем состоянии So и за малое время Δ t перешла в состояние So Переход системы происходит под воздействием потока λ01 с вероятностью, приближенно равной λ01Δ t
Вероятность того, что система будет находиться в состоянии S1, в этом варианте равна po(t) λ 01 Δ t;
в) система находилась в состоянии S2 и за время Δ t перешла в состояние S1 под воздействием потока интенсивностью λ 21 с вероятностью, приближенно равной λ21Δ t. Вероятность того, что система будет находиться в состоянии S1, равна p2(t) λ21Δ t.
Применяя теорему сложения вероятностей для этих вариантов, получим выражение:
которое можно записать иначе:
Переходя к пределу при Δt -> 0, приближенные равенства перейдут в точные, и тогда получим производную первого порядка
что является дифференциальным уравнением.
Проводя
рассуждения аналогичным
Для составления
уравнений Колмогорова
Уравнения
Колмогорова позволяют
Поскольку
предельные вероятности системы
постоянны, то заменив в уравнениях
Колмогорова соответствующие
Например, для СМО, имеющей размеченный граф из трех состояний So, S1, S2 рис. 6.2.1, система уравнений Колмогорова, составленная на основе изложенного правила, имеет следующий вид:
Для состояния
Для состояния
Для состояния
К этим уравнениям надо добавить еще начальные условия. Например, если при t = 0 система S находится в состоянии S1, то начальные условия можно записать так:
Переходы
между состояниями СМО
Если
все потоки событий, переводящие
систему из одного состояния в
другое, простейшие, то процесс, протекающий
в системе, будет марковским случайным
процессом, т.е. процессом без последствия.
В этом случае поведение системы
достаточно просто, определяется, если
известны интенсивность всех этих простейших
потоков событий. Например, если в
системе протекает марковский случайный
процесс с непрерывным
Во многих
случаях на практике оказывается, что
вероятности состояний как
независимо от вида начальных условий. В этом случае говорят, что существуют предельные вероятности состояний системы при t->∞ и в системе устанавливается некоторый предельный стационарный режим. При этом система случайным образом меняет свои, состояния, но каждое из этих состояний осуществляется с некоторой постоянной вероятностью, определяемой средним временем пребывания системы в каждом из состояний.
Вычислить предельные вероятности состояния рi можно, если в системе положить все производные равными 0, поскольку в уравнениях Колмогорова при t-> ∞ зависимость от времени пропадает. Тогда система дифференциальных уравнений превращается в систему Обычных линейных алгебраических уравнений, которая совместно с нормировочным условием позволяет вычислить все предельные вероятности состояний.
Среди однородных марковских процессов существует класс случайных процессов, имеющих широкое применение при построении математических моделей в областях демографии, биологии, медицины (эпидемиологии), экономики, коммерческой деятельности. Это так называемые процессы «рождения - гибели», марковские процессы со стохастическими графами состояний следующего вида:
S1 |
S2 |
λ0 λ1 λ2 λ3 λn-1
S0 |
S3 |
kjlSn |
μ0 μ1 μ3 μ4 μn-1
Рис.
2.1 Размеченный граф процесса «рождения - гибели»
Этот
граф воспроизводит известную
Для Марковского
процесса «рождения - гибели», описанного
стохастическим графом, приведенным
на рис. 2.1, найдем финальное распределение.
Пользуясь правилами
для состояния S0-λ0p0=μ0p1;
для состояния S1-(λ1+μ0)p1= λ0p0+μ1p2, которое с учетом предыдущего уравнения для состояния S0 можно преобразовать к виду λ1р1= μ1p2.
Аналогично можно составить уравнения для остальных состояний системы S2, S3,…, Sk,…, Sn. В результате получим следующую систему уравнений: