Теория вероятностей

Автор работы: Пользователь скрыл имя, 30 Января 2013 в 10:13, контрольная работа

Описание работы

Задача 1. В партии из 10 деталей две бракованные. Найти вероятность того, что среди выбранных на удачу четырех деталей окажется одна бракованная.
Задача 2. В квадрат с вершинами (0;0), (0;1), (1;0), (1;1) наудачу брошена точка .
Задача 3. По каналу связи передаются три сообщения, каждое из которых может быть передано правильно или частично искажено. Вероятность того, что сообщение передано правильно – 0,8. Считая, что сообщение искажается или передается правильно не зависит от количества передач и от результата предыдущей связи найти вероятности следующих событий:
{ все три сообщения переданы верно}
{ одно из трех сообщений искажено}
{ хотя бы одно из трех сообщений искажено}
Задача 4. Монета подброшена 5 раз. Какова вероятность, что герб появится не более 2 раз?
Задача 5. Производится 400 выстрелов по мишени. Вероятность попадания при одном выстреле равна 0,8. Найти: а) наивероятнейшее число попаданий; б) вероятность 320 попаданий в мишень; в) вероятность того, что число попаданий в мишень будет не менее 300 и не более 350.
Задача 6. Вероятность того, что деталь нестандартна, равна =0,1. Сколько деталей надо отобрать, чтобы с вероятностью, равной 0,9544,можно было бы утверждать, что относительная частота появления нестандартной детали отклонится от вероятности не более, чем на 0,03?

Файлы: 1 файл

TeoriaVer.doc

— 598.50 Кб (Скачать файл)

 

Вариант №4

  1. В лифт девятиэтажного дома на первом этаже вошли 3 человека. Каждый из них с одинаковой вероятностью выходит на любом из этажей, начиная со второго. Найти вероятности следующих событий:

А) – все пассажиры выйдут на одном этаже.

В) – все пассажиры выйдут на разных этажах.

  1. Бросают два игральных кубика. Найти вероятность того, что сумма очков, выпавших на этих кубиках, не превзойдет 6.
  2. Каждое их двух чисел неотрицательно, но меньше 2. Найти такие два числа, сумма которых не больше 2,5, а произведение больше 4.
  3. В урне «а» белых шаров и «в» черных (а>2). Из урны вынимают сразу два шара. Найти вероятность того, что оба шара будут белыми?
  4. В урне 8 шаров: 3 белых и 5 черных. Какова вероятность того, что вынутые наугад два шара окажутся:

а) белые;

б) черные;

в) одного цвета.

  1. Радист трижды вызывает корреспондента. Причем следующий вызов производится при условии, что предыдущий вызов не принят. Вероятность принятия первого вызова равна 0,3, второго – 0,4, третьего – 0,5. Найти вероятность того, что вызов будет принят.
  2. На карточках написаны цифры 2,3,4,5,6,7,8,9.  Наудачу берут две карточки. Какова вероятность, что обе выбранные цифры нечетные.
  3. В ящике содержится 12 деталей завода №1, 20 деталей завода №2; 18 деталей завода №3. Вероятность того, что деталь завода №1 отличного качества, равна, 0,9; для деталей заводов №2 и №3 вероятности соответственно равны 0,6 и 0,9. Найти вероятность того, что извлеченная наудачу деталь окажется отличного качества.
  4. Известно, что 5% мужчин и 0,25 всех женщин дальтоники. Наудачу выбранное лицо – дальтоник. Какова вероятность того, что это мужчина? (считать, что мужчин и женщин одинаковое количество).
  5. Найти вероятность того, что при пяти подбрасываниях игрального кубика единица появляется хотя бы один раз.
  6. Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти число испытаний , при котором с вероятностью 0,9876 можно ожидать, что относительная частота появления события отклоняется от его вероятности по абсолютной величине не более чем на 0,04.
  7. Вероятность появления события в каждом из независимых испытаний равна 0,5. Найти число испытаний , при котором с вероятностью 0,9973 можно ожидать, что относительная частота появления события отклониться от его вероятности по абсолютной величине не более, чем на 0,02.
  8. Определить надежность схемы, если Pi – надежность i – го элемента

 

 

Вариант №5

  1. На пяти карточках написаны цифры 1,2,3,4,5. Две из них, одна за другой, вынимаются. Найти вероятность того, что число на второй карточке будет больше, чем на первой.
  2. Бросают два игральных кубика. Найти вероятность того, что сумма очков, выпавших на этих кубиках, равна 8.
  3. На окружности выбрана некоторая точка А, через которую проводится случайная хорда. Какова вероятность, что длина хорд будет больше стороны правильного вписанного шестиугольника?
  4. В урне 7 белых шаров и 3 черных. Наудачу достают 2 шара. Какова вероятность того, что они разного цвета.
  5. Среди 6 лотерейных билетов 2 выигрышных. Наудачу берут два билета. Какова вероятность того, что среди них окажется:

а) один выигрышный;

б) два выигрышных.

  1. На карточках написаны цифры 4,5,7,8,9. Наудачу берут две карточки. Какова вероятность, что обе выбранные цифры окажутся нечетными?
  2. В первой урне имеется 3 белых и 2 черных шара, во второй 4 белых и 6 черных. Шары отличаются только цветом. Из каждой урны достают по одному шару. Какова вероятность, что они окажутся одного цвета?
  3. В первой урне содержится 10 шаров, из них 8 белых; во второй урне 20 шаров, из них 4 белых. Из каждой урны наудачу извлекли по одному шару, а затем из этих двух шаров наудачу взят один шар. Найти вероятность того, что взят белый шар.
  4. В урне находится один шар, о котором известно, что он либо белый, либо черный. В урну положили белый шар, а потом после тщательного перемешивания вынули наудачу один шар, который оказался белым. Какова вероятность того, что после этого вынут из урны белый шар?
  5. Вероятность попадания в мишень хотя бы один раз при двух выстрелах для данного стрелка равна 0,99. Найти вероятность попадания в мишень данным стрелком при одном выстреле.
  6. Вероятность появления события в каждом из 10000 независимых испытаний равна 0,75. Найти такое положительное , что с вероятностью 0,979 абсолютная величина отклонения относительной частоты появления события от его вероятности 0,75 не превысит .
  7. Завод отправил на базу 1000 изделий. Вероятность повреждения изделий в пути 0,002. Найти вероятность того, что в пути будет повреждено не более трех изделий.
  8. Определить надежность схемы, если Pi – надежность i – го элемента

 

Вариант №6

  1. Какова вероятность того, что в выбранном наудачу двухзначном числе цифры: а) одинаковые; б) различные.
  2. На карточках написаны цифры 1,2,3,4,5. Наудачу достают две карточки. Какова вероятность, что сумма цифр на них будет четной?
  3. Какова вероятность того, что сумма двух наугад взятых положительных чисел, каждое из которых не больше единицы, не превзойдет единицы, а их произведение больше 2/9?
  4. В урне 5 белых шаров, 3 черных и 6 красных. Наудачу достают 5 шаров. Какова вероятность того, что в выборку попадут 2 белых, 2 черных и 1 красный шар.
  5. Партия из 15 деталей содержит 3 бракованные. Контролер для проверки наудачу берет 5 деталей. Если среди отобранных деталей не будет обнаружено бракованных деталей, то партия принимается. Найти вероятность того, что данная партия будет принята.
  6. В связке имеется 6 ключей, из которых только один подходит к двери. Найти вероятность того, что на открывание потребуется не более четырех опробований. Предполагается, что опробованный ключ в дальнейших опробованиях не участвует.
  7. Покупатель приобрел пылесос и полотер. Вероятность того, что пылесос не выйдет из строя в течение гарантийного срока, равна 0,95, для полотера такая вероятность равна 0,9. Найти вероятность того, что

а) оба прибора выдержат гарантийный  срок;

б) хотя бы один выдержит гарантийный  срок.

  1. Вероятности того, что во время работы цифровой электронной машины возникает сбой в арифметическом устройстве, в оперативной памяти, в остальных устройствах, относятся как 3:2:5. Вероятности обнаружения сбоя в арифметическом устройстве, в оперативной памяти и в остальных устройствах соответственно равны 0,8; 0,9; 0,9. Найти вероятность того, что возникший в машине сбой будет обнаружен.
  2. Урна содержит шаров. Все предположения о числе белых шаров в урне равновозможны. Наудачу выбранный из урны шар оказался белым. Вычислить вероятность всех предположений о составе шаров в урне. Какое предположение наиболее вероятно.
  3. Вероятность изготовления прибора повышенного качества равна 0,74. Найти наивероятнейшее число приборов повышенного качества в партии из 80 приборов и вероятность этого результата.
  4. Отдел технического контроля проверяет 475 изделий на брак. Вероятность того, что изделие бракованное, равна 0,05. Найти с вероятностью 0,9426 границы, в которых будет  заключено число бракованных изделий среди проверенных.
  5. Вероятность появления события в каждом из независимых испытаний равна 0,7. Найти вероятность того, что при 400 испытаниях событие появится 300 раз.
  6. Определить надежность схемы, если Pi – надежность i – го элемента

 

Вариант №7

  1. Брошены две игральные кости. Какова вероятность, что сумма выпавших очков не менее 9?
  2. Вероятность того, что в течение одной смены возникает неполадка станка, равна 0,1. Найти вероятность того, что не пройдет ни одной неполадки за три смены.
  3. На отрезке АВ длины l поставлена наудачу точка М. Какова вероятность того, что расстояние этой точки от середины отрезка меньше, чем расстояние этой точки до ближайшего края.
  4. В урне N белых шаров и M черных. Надуачу извлекается K шаров (K>M).Какова вероятность того, что в урне остались только белые шары?
  5. В ящике имеется 5 красных шаров и 3 синих, шары отличаются только цветом. Наудачу достают два шара. Найти вероятности того, что оба шара окажутся:

а) одного цвета;

б) разного.

  1. Бросаются одновременно две игральные кости. Найти вероятность того, что произведение выпавших очков будет четным.
  2. Рабочий обслуживает три станка. Вероятность того, что в течение часа для первого станка потребуется внимание рабочего, равна 0,3, для второго – эта вероятность равна 0,2, для третьего – 0,15. Какова вероятность того, что

1) для всех трех станков потребуется внимание рабочего,

2) ни для одного не потребуется  внимания.

  1. Электролампы изготовляются на 3-х заводах. Первый завод производит 45% общего количества электроламп, второй – 40%, третий – 15%. Продукция первого завода содержит 70% стандартных ламп, второго – 80%, третьего – 81%. В магазин поступает продукция всех трех заводов. Какова вероятность того, что приобретенная в магазине лампа стандартная?
  2. В пирамиде установлено 10 винтовок, из которых 4 снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,8. Стрелок поразил мишень из наудачу взятой винтовки. Что вероятнее: стрелок стрелял из винтовки с оптическим прицелом или без него?
  3. Найти наиболее вероятное число попаданий в мишень при 210 выстрелах и вероятность такого результата, если вероятность попадания в мишень при одном выстреле для данного стрелка равна 0,7.
  4. Сто станков работают независимо друг от друга. Вероятность бесперебойной работы каждого из них в течение смены равна 0,8. Найти вероятность того, что в течение данной смены безотказно поработают 85 станков.
  5. Вероятность изготовления бракованного генератора автомобильного двигателя равна 0,0003. Определить вероятность того, что в изготовленной партии из 200 шт. окажется хотя бы один бракованный.
  6. Определить надежность схемы, если Pi – надежность i – го элемента

 

Вариант №8

  1. Из букв слова «ротор», составленного из букв разрезной азбуки, наудачу последовательно извлекаются 3 буквы и складываются в ряд. Какова вероятность того, что получится слово «тор».
  2. Бросаются четыре игральные кости. Найти вероятность того, что на них выпадет по одинаковому числу очков.
  3. На плоскости нанесена сетка квадратов со стороною «а». На плоскость наудачу брошена монета радиуса . Найти вероятность того, что монета не пересечет ни одной из сторон квадрата. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади фигуры и не зависит от ее расположения.
  4. Студент знает 30 из 40 вопросов программы. Найти вероятность того, что студент знает 2 вопроса, содержащиеся в его экзаменационном билете.
  5. На складе имеются 8 изделий, 3 из них изготовлены заводом N. Найти вероятность того, что среди 4 наудачу взятых изделий окажется не более половины, изготовленных заводом N.
  6. Вероятность успешной попытки выполнить упражнение для каждого из двух спортсменов равна 0,5. Спортсмены упражнение выполняют по очереди, причем каждый делает по две попытки. Выполнивший упражнение первым получает приз. Найти вероятность получения приза спортсменами.
  7. Экзаменационный билет содержит три вопроса. Вероятность того, что студент ответит на любой вопрос билета, равна 0,9. Найти вероятность того, что студент сдаст экзамен, если для этого необходимо ответить хотя бы на два вопроса билета.
  8. На фабриках «а», «в» и «с» производят соответственно 25, 35 и 40% всех изделий. В их продукции брак составляет соответственно 5,4 и 2 %. Какова вероятность того, что случайно выбранное изделие, произведенное на фабрике, дефектно?
  9. В специализированную больницу поступают в среднем 50% больных с заболеванием К, 30% с заболеванием L, 20% с заболеванием М. Вероятность полного излечения болезни К равна 0,7; для болезни L и M эти вероятности соответственно равны0,8 и 0,9. Больной, поступивший в больницу, был выписан здоровым. Найти вероятность того, что этот больной страдал заболеванием К.
  10. Вероятность того, что малое предприятие за год станет банкротом равна 0,2. Найти вероятность того, что из 10 малых предприятий за год сохранятся хотя бы два.
  11. Вероятность появления события в каждом из независимых опытов равна 0,95. Найти вероятность того, что событие появится не менее 1800 раз в 2000 опытах.
  12. Всхожесть семян ржи составляет 90%. Найти вероятность того, что из 10000 посеянных семян взойдет 900.
  13. Определить надежность схемы, если Pi – надежность i – го элемента

Информация о работе Теория вероятностей