Теория вероятностей

Автор работы: Пользователь скрыл имя, 30 Января 2013 в 10:13, контрольная работа

Описание работы

Задача 1. В партии из 10 деталей две бракованные. Найти вероятность того, что среди выбранных на удачу четырех деталей окажется одна бракованная.
Задача 2. В квадрат с вершинами (0;0), (0;1), (1;0), (1;1) наудачу брошена точка .
Задача 3. По каналу связи передаются три сообщения, каждое из которых может быть передано правильно или частично искажено. Вероятность того, что сообщение передано правильно – 0,8. Считая, что сообщение искажается или передается правильно не зависит от количества передач и от результата предыдущей связи найти вероятности следующих событий:
{ все три сообщения переданы верно}
{ одно из трех сообщений искажено}
{ хотя бы одно из трех сообщений искажено}
Задача 4. Монета подброшена 5 раз. Какова вероятность, что герб появится не более 2 раз?
Задача 5. Производится 400 выстрелов по мишени. Вероятность попадания при одном выстреле равна 0,8. Найти: а) наивероятнейшее число попаданий; б) вероятность 320 попаданий в мишень; в) вероятность того, что число попаданий в мишень будет не менее 300 и не более 350.
Задача 6. Вероятность того, что деталь нестандартна, равна =0,1. Сколько деталей надо отобрать, чтобы с вероятностью, равной 0,9544,можно было бы утверждать, что относительная частота появления нестандартной детали отклонится от вероятности не более, чем на 0,03?

Файлы: 1 файл

TeoriaVer.doc

— 598.50 Кб (Скачать файл)

 

 

Вариант №9

  1. Буквенный замок содержит в общей оси 4 диска, каждый из которых разделен на 6 секторов с различными нанесенными на них буквами. Замок открывается в том случае, если каждый диск занимает одно определенное положение относительно корпуса замка. Определить вероятность того, что замок откроется, если установлена произвольная комбинация букв.
  2. Какова вероятность, что наудачу взятое трехзначное число будет четным?
  3. На отрезке ОА длиною L числовой оси ОХ наудачу поставлены две точки В(х) и С(у), причем . (Координата точки С обозначена через у для удобства дальнейшего изложения). Найти вероятность того, что длина отрезка ВС будет меньше длины отрезка ОВ. Предполагается ,что вероятность попадания точки на отрезок пропорциональна длине этого отрезка и не зависит от его расположения на числовой оси.
  4. В корзине 12 белых теннисных мячей, 10 красных и 6 синих. Наудачу достают два мяча. Какова вероятность, что они окажутся одного цвета?
  5. В ящике лежат 11 одинаковых по форме пуговицы, из них: 5 черных пуговиц. Работнице требуется пришить к очередному пальто 4 черные пуговицы. Определить вероятность того, что среди наугад взятых 4 пуговиц все пуговицы черные.
  6. Рабочий обслуживает четыре станка. Вероятность того, что в течение часа первый станок не потребует внимания рабочего, равна 0,7, для второго станка эта вероятность равна 0,8, для третьего – 0,9, для четвертого – 0,85. Найти вероятность того, что в течение часа по крайней мере один станок потребует к себе внимания рабочего.
  7. На карточках написаны цифры 1,2, … , 20. Наудачу берут две карточки. Найти вероятность того, что одна выбранная цифра меньше 10, а вторая больше 10.
  8. В двух урнах содержатся соответственно и шаров, из них белых шаров и . Из первой урны переложили в другую один шар, цвет которого неизвестен. После этого из другой урны берут один шар. Какова вероятность того, что он белый?
  9. Три стрелка произвели залп, причем две пули поразили мишень. Найти вероятность того, что третий стрелок поразил мишень, если вероятности попадания в мишень первым, вторым и третьим стрелками соответственно равны ; ; .
  10. Найти вероятность того, что при 5 бросаниях монеты число появлений герба будет больше числа появлений решек.
  11. Для данного стрелка вероятность попадания в мишень при одном выстреле равна 0,9. Произведено 1000 выстрелов по мишени. Найти вероятность того, что число попаданий будет менее 80 и не более 95.
  12. Вероятность появления события в каждом из независимых испытаний равна 0,5. Найти число испытаний , при котором с вероятностью 0,9973 можно ожидать, что относительная частота появления события отклониться от его вероятности по абсолютной величине не более, чем на 0,02.
  13. Определить надежность схемы, если Pi – надежность i – го элемента

 

Вариант №10

  1. На карточках написаны цифры 1,2,3,4,5. Наудачу достают две карточки. Какова вероятность, что сумма цифр на них будет четной?
  2. Из последовательности чисел 1,2,…,100 наудачу выбираются 2 числа. Какова вероятность, что одно из них меньше 30, а другое больше 30?
  3. В квадрате с вершинами (0,0), (0,2), (2,2) и (2,0) наудачу берется точка (х,у). Какова вероятность того, что ?
  4. Партия из 15 деталей содержит 3 бракованные. Контролер для проверки наудачу берет 5 деталей. Если среди отобранных деталей не будет обнаружено бракованных деталей, то партия принимается. Найти вероятность того, что данная партия будет принята.
  5. В ящике в случайном порядке разложено двадцать деталей, причем пять из них стандартные. Рабочий берет наудачу три детали. Найти вероятность того, что, по крайней мере, одна из этих деталей окажется стандартной.
  6. Рабочий обслуживает три станка, вероятность того, что в течение часа для первого станка не потребуется помощь рабочего равна 0,9, для второго – 0,8, для третьего – 0,7. Найти вероятность того, что, по крайней мере, для двух станков не потребуется помощь рабочего.
  7. Из трех орудий произвели залп по цели. Вероятность попадания в цель при одном выстреле из первого орудия равна 0,9; для второго и третьего орудий эти вероятности соответственно равны 0,5 и 0,8. Найти вероятность того, что

а) только один снаряд попадет в  цель;

б) все три снаряда  попадут в цель.

  1. Радиолокационная станция ведет наблюдение за объектом, который может создавать помехи. Если объект не создает помехи, то за один цикл осмотра станция обнаруживает его с вероятностью , если создает – с вероятностью ( < ). Вероятность того, что во время цикла осмотра будут созданы помехи, равна в других циклах. Найти вероятность обнаружения объекта, по крайней мере, один раз за 1 цикл осмотра.
  2. В ящик, где 10 деталей 1-го сорта и 3 детали 2-го сорта, токарь положил одну изготовленную деталь. После чего сборщик взял наудачу из ящика одну деталь, которая оказалась первого сорта. Найти вероятность того, что вложенная токарем деталь была 2-ого сорта, если он изготавливает детали только 1-го и 2-го сортов с вероятностями 0,95 и 0,5 соответственно.
  3. Вероятность рождения мальчика равна 0,515. Найти вероятность того, что из 20 новорожденных будет 11 мальчиков.
  4. Вероятность появления события в каждом из независимых испытаний равна 0,9. Сколько нужно произвести испытаний, чтобы с вероятностью не меньшей 0,8 можно было ожидать, что отклонение относительной частоты от вероятности появления события в одном испытании равной 0,9 не превзойдет 0,2.
  5. Вероятность неточной сборки прибора равна 0,1. Найти вероятность того, что среди 900 приборов окажется от 750 до 850 точных.
  6. Определить надежность схемы, если Pi – надежность i – го элемента

 

Вариант №11

  1. На карточках написаны цифры 1,2,3,4,5,6,7. Наудачу взяли две карточки. Какова вероятность, что одно число будет меньше трех, а другое больше трех?
  2. Лотерея выпущена на общую сумму N р. Цена одного билета р. Ценные выигрыши попадают на билетов. Определите вероятность ценного выигрыша на один билет.
  3. Найти вероятность события , если х и у – координаты точки М(х, у), брошенной в квадрат , .
  4. В ящике 12 красных и 4 синих пуговиц. Вынимают наугад две пуговицы. Какова вероятность того, что пуговицы будут одноцветными?
  5. В группе 25 студентов из них 5 отличников. Какова вероятность того, что среди 7 наугад выбранных по списку студентов 3 отличника.
  6. Вероятность попадания в мишень для данного стрелка равна 0,7. Стрелок делает два выстрела по мишени. Найти вероятности следующих событий:

а) стрелок попадет 2 раза;

б) попадет один раз;

в) попадет хотя бы один раз.

  1. В лотерее 100 билетов, из которых 10 выигрышных. Участник покупает три билета. Определить вероятность того, что хотя бы один билет будет выигрышным.
  2. В урну, которая содержит шаров, положили белый шар. Какова вероятность того, что вынутый из урны шар будет белым, если все предположения о начальном составе урны равновероятны.
  3. Из урны, содержащей 7 белых и 12 черных шаров, наудачу без возвращения извлекли 2 шара. Что вероятнее: первый извлеченный шар был белым или черным, если известно, что второй извлеченный шар оказался белым.
  4. Электронная система состоит из 28 блоков, каждый из которых может отказать в течение года с вероятностью 0,05. Найти наиболее вероятное число отказов и его вероятность.
  5. Игральный шестигранный кубик подбрасывается 500 раз. Какова вероятность того, что отклонение относительной частоты появления шестерки от вероятности ее появления в одном опыте по абсолютной величине не превзойдет 0,1?
  6. Всхожесть семян некоторого растения равна 0,9. Какова вероятность того, что из 100 посеянных семян взойдет не менее 80.
  7. Определить вероятность разрыва цепи, если Pi – надежность i – го элемента

 

Вариант №12

  1. По ячейкам случайно распределяются предметов. Найти вероятность, что все предметы попадут в одну ячейку.
  2. Три предмета распределяются по 5 ячейкам случайным образом. Найти вероятность того, что все они попадут в разные ячейки
  3. Плоскость разграфлена прямоугольниками со сторонами 6 и 4 см. На плоскость брошен круг радиуса 1 см. Какова вероятность, что он не пересечет ни одну из линий.
  4. Ящике лежат одинаковые по форме пуговицы: 6 черных и 5 белых. Работнице требуется пришить к очередному пальто 3 черные пуговицы. Определить вероятность того, что среди наугад взятых 5 пуговиц имеется нужное количество черных пуговиц.
  5. Студент из 15 вопросов знает ответы только на 7 вопросов. Определить вероятность того, что из 5 наугад выбранных вопросов он знает ответы на 3 вопроса.
  6. Вероятность появления события в одном испытании равна 0,7. Найти вероятность того, что среди пяти испытаний удачных будет не более двух.
  7. В урне 7 белых шаров, 3 черных и 2 красных. Наудачу достают два шара. Найти вероятность того, что они оба окажутся одного цвета.
  8. В пирамиде установлены 5 винтовок, из которых 3 снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок произведет один выстрел из наудачу взятой винтовки.
  9. Вся продукция проверяется двумя контролерами. Вероятность того, что изделие попадет на проверку к первому контролеру, равна, 0,55, а ко второму – 0,45. Вероятность пропустить нестандартные изделия для первого контролера равна 0,01, для второго – 0,02. Взятое наудачу изделие с маркой «стандарт» оказалось бракованным. Какова вероятность, что изделие проверялось вторым контролером?
  10. В ходе аудиторской проверки компании аудитор случайным образом отбирает 5 счетов. Найти вероятность того, что обнаружит 1 счет с ошибкой, если ошибки содержат в среднем 3% счетов.
  11. Вероятность наступления события в одном опыте равна 0,6. Вычислить вероятность того, при 6000 испытаниях событие произойдет не менее 340 и не более 380 раз.
  12. Вероятность появления события в каждом из 2100 независимых испытаний равна 0,7. Найти вероятность того, что событие появится:

а) не менее 1470 и не более 1500 раз;

б) не менее 1470 раз;

в) не более 1469 раз.

  1. Определить вероятность разрыва цепи, если Pi – надежность i – го элемента

 

Вариант №13

  1. Бросают два игральных кубика. Найти вероятность того, что произведение выпавших очков равно 8.
  2. Ребенок играет с четырьмя буквами разрезной азбуки А, А, М, М. Какова вероятность того, что при случайном расположении букв в ряд он получит слово «МАМА»?
  3. Определить вероятность того, что корни квадратного уравнения вещественны, если и .
  4. Определить вероятность того, что партия из ста изделий, среди которых пять бракованных, будет принята при испытании наудачу выбранной половины всей партии, если условиями приема допускается наличие бракованных изделий не более одного из пятидесяти.
  5. Имеется пять билетов стоимостью по одному рублю, три билета по три рубля и два билета по пять рублей. Наугад берутся три билета. Определить вероятность того, что
  6. В одной урне 5 белых шаров и 4 черных, во второй – 4 белых и 6 черных. Наудачу достают по одному шару из каждой урны. Какова вероятность того, что среди вынутых шаров окажется:

а) один белый шар;

б) два белых шара.

  1. В кармане имеются 10 монет по 20 к., 5 монет по 15 к. и 2 монеты по 10 к. Наудачу берется 6 монет. Какова вероятность того, что в сумме они составят не более одного рубля.
  2. Имеются три станка. На первом станке токарь изготавливает деталь высшего сорта с вероятностью 0,95 ,на втором и третьем с вероятностями 0,9 и 0,8 соответственно. На случайно выбранном станке теперь изготовили одну деталь. Какова вероятность того, что эта деталь будет высшего сорта.
  3. В ремесленном цехе трудятся 3 мастера и 6 их учеников. Мастер допускает брак при изготовлении изделия с вероятностью 0,05; ученик – с вероятностью 0,15. Поступившее из цеха изделие оказалось бракованным. Какова вероятность, что его изготовил мастер?
  4. В среднем 20% акций на аукционе продается по первоначально заявленной стоимости .Найти вероятность того, что из 10 пакетов акций в результате торгов будут проданы не менее двух пакетов акций.
  5. Произведено 1000 независимых испытаний, вероятность появления события в одном испытании равна 0,7. Оценить вероятность того, что отклонение относительной частоты появления события от вероятности 0,7 по абсолютной величине не превзойдет 0,1.
  6. Вероятность поражения мишени при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена ровно 75 раз.
  7. Определить вероятность разрыва цепи, если Pi – надежность i – го элемента

 

Вариант №14

  1. Бросают два игральных кубика. Найти вероятность того, что произведение выпавших очков четное.
  2. Числа 1,2,3,4,5 написаны на пяти карточках. Наугад последовательно выбираются три карточки и располагаются в порядке появления слева направо. Найти вероятность того, что полученное при этом трехзначное число будет четным.
  3. В круге радиуса R наудачу выбрана точка. Найдите вероятность того, что эта точка окажется внутри данного вписанного правильного треугольника.
  4. Абонент забыл последнюю цифру номера телефона и поэтому набирает ее наудачу. Определить вероятность того, что ему придется звонить не более чем в четыре места.
  5. В лотерее N билетов, из которых M выигрышных. Участник купил k билетов. Какова вероятность того, что он ни по одному билету не выиграет?
  6. Из группы, где 8 мужчин и 5 женщин, наудачу выбрали 3 человека. Найти вероятность того, что среди выбранных лиц будет, по крайней мере, одна женщина.
  7. Из урны, содержащей 5 шаров с номерами от 1 до 5, последовательно извлекаются два шара, причем первый шар возвращается, если номер не равен единице. Определить вероятность того, что шар с номером два будет извлечен при втором извлечении.
  8. В первой группе из 25 студентов – 10 юношей, во второй из 20 студентов – 8 юношей. Из наудачу выбранной группы случайно выбрали одного студента для дежурства. Найти вероятность того, что дежурный-юноша.
  9. В данный район изделия поставляются двумя фирмами в соотношении 5:8. Среди продукции первой фирмы стандартные изделия составляют 90%, второй – 85%. Взятое наугад изделие оказалось стандартным. Найти вероятность того, что оно изготовлено первой фирмы.
  10. В 10% случаев страховая компания выплачивает по договорам страховку. Найти вероятность того, что по истечение срока 10 договоров компания уплатит страховку в 2 случаях.
  11. Вероятность появления события в одном опыте равна 0,9. Произведено 900 опытов. Найти наивероятнейшее число появлений события и вероятность такого результата.
  12. Вероятность появления события в каждом из 900 независимых испытаний равна 0,5. Найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не белее чем на 0,02.
  13. Определить вероятность разрыва цепи, если Pi – надежность i – го элемента

 

Вариант №15

Информация о работе Теория вероятностей