Автор работы: Пользователь скрыл имя, 09 Декабря 2012 в 16:52, тест
ВЫСШАЯ МАТЕМАТИКА ВК2 ТЕСТЫ РИУ ТАНТАЛ МЭИ
всего 18 заданий по 5 вопросов
Задание 1
Вопрос 1. Пусть А, В - множества. Что означает запись A...B, B...A?
1. Множество А является строгим подмножеством множества В, которое является истинным подмножеством множества А
2. Множества А, В являются бесконечными
3. Множества А, В являются конечными
4. Множества А, В не являются пустыми
5. Множества А, В равны
2. Если расстояние между ближайшими кодовыми словами не менее 3
3. Если длина передаваемого слова нечетна
4. Если сумма единиц в этом сообщении четна
5. Если вместе со словом
будет передана контрольная
Вопрос 4. Что означает запись n(Ak) в формуле перекрытий?
1. Мощность множества A k
2. n-й элемент множества A k
3. Множество элементов N’ в U, не принадлежащих A k
4. Мощность множества элементов в U, не принадлежащих A k
5. Число слагаемых в формуле перекрытий
Вопрос 5. В студенческой группе всего 45 студентов. Из них в футбольной секции занимаются 31 человек, в шахматной – 28, в баскетбольной – 30. Одновременно в футбольной и шахматной секциях занимаются 20 студентов этой группы, в баскетбольной и футбольной – 22 студента, в шахматной и баскетбольной – 18 студентов. Кроме того известно, что 12 студентов этой группы занимаются одновременно в трех упомянутых секциях. Сколько студентов группы не занимается ни в одной из упомянутых секций?
1. 1
2. 2
3. 3
4. 4
5. 5
Задание 11
Вопрос 1. Укажите математическую модель для задачи: Кондитерская фабрика для производства трех видов карамели А, В и С использует три вида основного сырья: сахарный песок, патоку и фруктовое пюре. Нормы расхода сырья каждого вида на производства 1 т карамели данного вида приведены в таблице. В ней же указано общее количество сырья каждого вида, которое может быть использовано фабрикой, а также приведена прибыль от реализации 1 т карамели данного вида.
Вид сырья Нормы расхода сырья (т) на 1 т карамели Общее количество сырья (т)
А В С
Сахарный песок 0.8 0.5 0.6 800
Патока 0.4 0.4 0.3 600
Фруктовое пюре - 0.1 0.1 120
Прибыль от реализации 1 т продукции (руб) 108 112 126
Найти план производства карамели, обеспечивающий максимальную прибыль от ее реализации.
1. Найти минимум функции F = - 108XA-112XB – 126 XC при условиях:
08.XA + 0.5XB + 0.6XC ≤ 800
0.4X A + 0.4XB + 0.3XC ≤ 600
0.1XB+ 0.1XC≤ 120
XA ≥ 0; XB ≥ 0; XC ≥ 0
2. Найти максимум функции F = 108XA + 112XB + 126XCпри условиях:
08.XA + 0.5XB + 0.6XC ≤ 800
0.4X A + 0.4XB + 0.3XC ≤ 600
0.1XB+ 0.1XC≤ 120
XA ≥ 0; XB ≥ 0; XC ≥ 0
3. Найти минимум функции F = 0.8XA + XB+ 0.3XC при условиях:
0.4X A + 0.4XB + 0.3XC ≥ 600
0.1XB+ 0.1XC≥ 120
XA ≥ 0; XB ≥ 0; XC ≥ 0
4. Найти максимум функции F = XA + XB + XCпри условиях:
08.XA + 0.5XB + 0.6XC ≥ 800
0.4X A + 0.4XB + 0.3XC ≥ 600
0.1XB+ 0.1XC≥ 120
XA ≥ 0; XB ≥ 0; XC ≥ 0
5. Найти максимум функции F = 800 XA + 600 XB + 120 XC при условиях:
08.X A + 0.4XB ≤108
0.5X A + 0.4XB + 0.1XC ≤ 112
0.6X A + 0.3XB + 0.1XC ≤ 126
XA ≥ 0; XB ≥ 0; XC ≥ 0
Вопрос 2. Укажите математическую модель для задачи: При откорме животных каждое животное ежедневно должно получать не менее 60 единиц питательного вещества А, не менее 50 единиц вещества В и не менее 12 единиц вещества С. Указанные питательные вещества содержат три вида корма. Содержание единиц питательных веществ в 1 кг каждого из видов корма приведено в следующей таблице: Питательные вещества Количество единиц питательных веществ в 1 кг корма вида
I II III
А 1 3 4
В 2 4 2
С 1 4 3
Составить дневной рацион, обеспечивающий получение необходимого количества питательных веществ при минимальных денежных затратах, если цена 1 кг корма I вида составляет 9 копеек, корма II вида – 12 копеек и корма III вида – 10 копеек.
1. Найти максимум функции F = x1 + x2 + x3 при условиях:
x1 + 3x2 + 4x3 ≤ 60
2x1 + 4x2 + 2x3 ≤ 50
x1 + 4x2 + 3x3 ≤ 12
x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
2. Найти минимум функции F = 9x1 + 12x2 + 10x3при условиях:
x1 + 3x2 + 4x3 ≥60
2x1 + 4x2 + 2x3 ≥ 50
x1 + 4x2 + 3x3 ≥ 12
x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
3. Найти минимум функции F = 9x1 + 12x2 + 10x3 при условиях:
x1 + 3x2 + 4x3 = 60
2x1 + 4x2 + 2x3 = 50
x1 + 4x2 + 3x3 = 12
x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
4. Найти максимум функции F = 60x1 + 50x2 + 12x3 при условиях:
x1 + 2x2 + x3 ≤ 9
3x1 + 4x2 + 4x3 ≤12
4x1 + 2x2 + 3x3≤ 10
x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
5. Найти минимум функции F = 9x1 + 12x2 + 10x3 при условиях:
x1 + 3x2 + 4x3 ≤ 60
2x1 + 4x2 + 2x3 ≤50
x1 + 4x2 + 3x3 ≤ 12
x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
Вопрос 3. Укажите математическую модель для задачи: В трех пунктах отправления сосредоточен однородный груз в количествах 420, 380, 400 т. Этот груз необходимо перевезти в три пункта назначения в количествах, соответственно равных 260, 520, 420 т. Стоимости перевозок 1 т груза из каждого пункта отправления в каждый пункт назначения известны и задаются матрицей (в условных единицах): ..., где
Найти план перевозок, обеспечивающий вывоз имеющегося в пунктах отправления и завоз необходимого в пункты назначения груза при минимальной общей стоимости перевозок.
1. Найти минимум функции при условиях:
x 1 + x 2 + x3 = 260
x 4 + x 5 + x6 = 520
x 7 + x 8 + x 9 = 420
x 1 + x 4 + x 7 = 420
x 2 + x 5 + x 8 = 380
x 3 + x 6 + x 9 = 400
x k ≥ 0 (k = 1`,9)
2. Найти минимум функции F = 2 x1 + 4 x2 + 3 x3 + 7 x4 + 5 x5 + 8x6 + 6 x7 + 9 x8 + 7 x9 при условиях:
x 1 + x 2 + x3 = 260
x 4 + x 5 + x6 = 520
x 7 + x 8 + x 9 = 420
x 1 + x 4 + x 7 ≤ 420
x 2 + x 5 + x 8 ≤ 380
x 3 + x 6 + x 9 ≤ 400
x k ≥ 0 x2 ≥ 0 ,…, x9 ≥ 0.
3. Найти минимум функции F = 2 x1 + 7 x2 + 6 x3 + 4 x4 + 5 x5 + 9x6 + 3 x7 + 8 x8 + 7 x9 при условиях:
x 1 + x 2 + x3 = 260
x 4 + x 5 + x6 = 520
x 7 + x 8 + x 9 = 420
x 1 + x 4 + x 7 ≤ 420
x 2 + x 5 + x 8 ≤ 380
x 3 + x 6 + x 9 ≤ 400
x k ≥ 0 x2 ≥ 0 ,…, x9 ≥ 0.
4. Найти минимум функции F = 2 x1 + 4 x2 + 3 x3 + 7 x4 + 5 x5 + 8x6 + 6 x7 + 9 x8 + 7 x9 при условиях:
x 1 + x 2 + x3 ≤ 260
x 4 + x 5 + x6≤520
x 7 + x 8 + x 9 ≤ 420
x 1 + x 4 + x 7 ≤ 420
x 2 + x 5 + x 8 ≤ 380
x 3 + x 6 + x 9 ≤ 400
x 1 ≥ 0 x2 ≥ 0 ,…, x9 ≥ 0.
5. Найти минимум функции F = 2 x1 + 4 x2 + 3 x3 + 7 x4 + 5 x5 + 8x6 + 6 x7 + 9 x8 + 7 x9 при условиях:
x 1 + x 2 + x3 = 420
x 4 + x 5 + x6 = 380
x 7 + x 8 + x 9 = 400
x 1 + x 4 + x 7 = 260
x 2 + x 5 + x 8 = 520
x 3 + x 6 + x 9 = 420
x 1 ≥ 0, x2 ≥ 0 ,…, x9 ≥ 0.
Вопрос 4. Укажите неэквивалентную форму записи для задачи:
1. F = 2x1 + x2 - x3 ® min
2x1 – x2 + 6x3 ≤ 12;
3x1 + 5x2 -12x3 = 14
-3x1 + 6x2 +4x3 ≤ 18
x1, x2 ,x3 ≥ 0
2. F = -2x1 – x2 + x3 ® min
- 2x1 + x2 - 6x3 ≥ - 12;
3x1 + 5x2 -12x3 = 14
3x1 - 6x2 - 4x3 ≥ -18
x1, x2 ,x3 ≥ 0
3. F = - 2x1 - x2 + x3 ® min
2x1 – x2 + 6x3 + x4 = 12;
3x1 + 5x2 -12x3 = 14
-3x1 + 6x2 + 4x3 + x5 =18
x1, x2 ,…,x5 ≥ 0
4. F = 2x1 + x2 - x3 ® min
2x1 - x2 + 6x3 ≤ 12;
3x1 + 5x2 -12x3 ≤ 14
- 3x1 - 5x2 + 12x3 ≤ - 14
-3x1 + 6x2 + 4x3 ≤ 18
x1, x2 ,x3 ≥ 0
5. F = - 2x1 - x2 + x3 ® min
2x1 - x2 + 6x3 ≤ 12;
3x1 + 5x2 -12x3 ≤ 14
-3x1 - 5x2 + 12x3 ≥ - 14
-3x1 + 6x2 + 4x3 ≤ 18
x1, x2 ,x3 ≥ 0
Вопрос 5. Укажите стандартную форму записи для задачи
F = - 2x1 + x2 + 5x3 ® min
4x1 + 2x2 + 5x3 ≤ 12;
6x1 - 3x2 +4x3 = 18
3x1 + 3x2 - 2x3 ≥ 16
x1, x2 ,x3 ≥ 0
1. F =2x1 - x2 -5x3 ® min
4x1 + 2x2 + 5x3 ≤ 12;
6x1 - 3x2 + 4x3 = 18
3x1 + 3x2 - 2x3 ≥ 16
x1, x2 ,x3 ≥ 0
2. F = -2x1 + x2 +5x3 ® min
4x1 + 2x2 + 5x3 ≤ 12;
6x1 - 3x2 + 4x3 = 18
-3x1 - 3x2 + 2x3 ≤ - 16
x1, x2 ,x3 ≥ 0
3. F = -2x1 + x2 +5x3 ® min
4x1 + 2x2 + 5x3 ≤ 12;
6x1 - 3x2 + 4x3 ≤18
-6x1 + 3x2 - 4x3 ≤ - 18
-3x1 – 3x2 + 2x3 ≤- 16
x1, x2 ,x3 ≥ 0
4. F = -2x1 + x2 +5x3 ® min
4x1 + 2x2 + 5x3 + x4 = 12;
6x1 - 3x2 + 4x3 = 18
3x1 + 3x2 - 2x3 – x5 = 16
x1, x2 ,x3 x4, x5 ≥ 0
5. F = 2x1 - x2 -5x3 ® min
-4x1 - 2x2 - 5x3 ≥12;
6x1 - 3x 2 - 4x3 ≥ 18
-6x1 + 3x 2 + 4x3 ≥–18
3x1 + 3x2 - 2x3 ≥ 16
x1, x2 ,x3 x4, x5 ≥ 0
Задание 12
Вопрос 1. На каком из рисунков дана верная геометрическая интерпретация решения задачи линейного программирования, обеспечивающего максимум целевой функции F.
1
2 рисунок
A Fmax справа посередине
3
4
5
Вопрос 2. На каком из рисунков дана верная геометрическая интерпретация решения задачи линейного программирования, обеспечивающего минимум целевой функции F.
1 рисунок
A Fmin слева посередине
2
3
4
5
Вопрос 3. Указать эквивалентную форму записи задачи, допускающую геометрическую интерпретацию решений в виде многоугольника: F = - 16x1 – x2 + x3 + 5x4 + 5x5®max
2x1 + x2 + x3 + = 10
- 2x1 + 3x2 + x4 = 6
2x1 + 4x2 – x5 = 8
X1, x2, x3, x4, x5 ≥ 0
1. F = - 16x1 – x2® max
2x1 + x2 ≤ 10
- 2x1 + 3x2 ≤ 6
2x1 + 4x2 ≥ 8
x1, x2 ≥ 0
2. F = - 16x1+ 19x2 + x3 + 5x4 ® max
2x1 + x2 + x3 = 10
- 2x1 + 3x2 + x4 = 6
2x1 + 4x2 ≥ 8
x1, x2, x3,x4 ≥ 0
3. F = - 8x1+ 18x2 + 5x4 ® max
2x1 + x2 ≤10
- 2x1 + 3x2 + x4 = 6
2x1 + 4x2 ≥ 8
x1, x2,x4 ≥ 0
4. F = - 16x1-x2 + x3 + 5x4 + 5x5 ® max
2x1 + x2 + x3 ≤10
- 2x1 + 3x2 + x4 ≤ 6
2x1 + 4x2 – x5 ≤ 8
x1, x2, x3,x4, x5 ≥ 0
5. F = 2x1+3x2 ® max
2x1 + x2 ≤10
- 2x1 + 3x2 ≤ 6
2x1 + 4x2 ≥ 8
x1, x2, ≥ 0
Вопрос 4. Используя геометрическую интерпретацию, найдите решение задачи:
F = x1+x2 ® max
x1 + 2x2 ≤14
- 5x1 + 3x2 ≤ 15
4x1 + 6x2 ≥ 24
x1, x2, ≥ 0
1. Fmax = 12 при x*1 = 10, x*2 = 2
2. F max = 10 при x*1 = 8, x2* = 2
3. F max = 11 при x*1 = 10, x2* = 1
4. F max = 15 при x*1 =7, x2* = 8
5. F max = 14 при x*1 = 14, x2* = 0
Вопрос 5. Используя геометрическую интерпретацию, найдите решение задачи:
F =- 2x1+x2 ® min
3x1 - 2x2 ≤12
- x1 + 2x2 ≤ 8
2x1 + 3x2 ≥ 6
x1, x2, ≥ 0
1. Fmax = - 10 при x*1 = 5, x*2 = 0
2. Fmax = 132 при x*1 = 10, x*2 = 8
3. Fmax = - 15 при x*1 = 8, x*2 = 1
4. Fmin = - 11 при x*1 = 10, x*2 = 9
5. Fmax = - 9 при x*1 = 5, x*2 =1
Задание 13
Вопрос 1. Указать максимальное значение целевой функции для задачи: F = 3x1 + 2x5 – 5x6®max
2x1 + x2 – 3x5 + 5x6 = 34
4x1 + x3 + 2x5 - 4x6 = 28
- 3x1 + x4 - 3x5 + 6x6 = 24
x1, x2,…, x6 ≥ 0
1. Fmax = 28
2. Fmax =30
3. Fmax = 26
4. Fmax = 20
5. Fmax = 34
Вопрос 2. Указать решение задачи:
F = ¯3x1 + 2x3 – 6x6`® max
2x1 + x2 – 3x3 + 6x6 = 18
- 3x1 + 2x3 + x4 – 2x6 =24
x1 + 3x3 + x5 – 4x6 = 36
x j ≥ 0 (j =1,¯6)
1. x * = (12; 3; 0; 18; 30; - 18)
2. x * = (19; 0; 0; 51; 27; 0)
3. x * = (10; 22; 8; 3; 8; 2)
4. x * = (18; 0; 6; 66; 0; 0)
5. x * = (36; 0;24; 90; - 60; 3)
Вопрос 3. Указать решение задачи:
F = 2x1 + 3x2 –x4 ® max
2x1 -x2 – 2x4 + x5 = 16
3x1 + 2x2 + x3 – 3x4 =18
- x1 + 3x2 + 4x4 + x6 = 24
x j ≥ 0 (j =1,¯6)
1. x * = (1; 6; 6; 1; 22;3)
2. x * = (5; 0;9; 2; 10;21)
3. x=(6/11;60/11;0;0;254/11;0)
4. x * = (1; 7; 1; 0; 21;4)
5. x * = (0;8;2; 0; 24;0)
Вопрос 4. Указать решение задачи:
F = 8x2 + 7x4 +x6 ® max
x1 -2x2 – 3x4 - 2x6 = 12
4x2 + x3 - 4x4 – 3x6 =12
5 x2 + 5x4 + x5 + x6 = 25
x j ≥ 0 (j =1,¯6)
1. x * = (32; 2; 27; 2; 0;5)
2. x * = (24; 3; 8; 2; 0; 0)
3. x * = (25; 1; 23; 3; 4; 1)
4. x * = (23; 4; 0; 1; 0;0)
5. x * = (62; 0;87; 0; 0;25)
Вопрос 5. Указать решение задачи:
F = 2x1 + x2 – x3 ® max
x1 + x2 + x3 = 5
2x1 + 3x2 + x4 = 13
xf ≥ 0 (f = 1,¯4)
1. x * = (5; 0; 0; 3;), Fmax = 10
2. x * = (1; 2; 2; 5;), Fmax = 11
3. x * = (6; 0; - 1; 1;), Fmax = 13
4. x * = (0; 5; 0; - 2;), Fmax = 10
5. x * = (3; 1; 1; 4;), Fmax =6
Задание 14
Вопрос 1. Какая из задач является двойственной по отношению к задаче:
F = x1 -2x2+ 5x1 ® max
2x1 + 2x2 + 4x3 ≤ 18
2x1 + x2 – 3x3 ≤ 20
5x1 – 3x2 + 6x3 ≥ 19
x1, x2, x3 ≥
1. F* = y1 – 2y2 +5y3 ® min 2y1 + 2y2 + 5y3 ≥ 18
4y1 – 3y2 + 6y3 ≥ 19
2. F* = 18y1 – 20y2 -19y3 ® min 2y1 + 2y2 + 5y3 ≥ 1
4y1 – 3y2 - 6y3 ≥ 5
3. F* = 18 y1 + 20y2 +19y3 ® min 2y1 + 2y2 + 5y3 ≤ 1
4y1 – 3y2 + 6y3 ≥ 5
4. F* = 18 y1 + 20y2 -19y3 ® min 2y1 + 2y2 + 5y3 ≥ 1
4y1 – 3y2 + 6y3 ≥ 5
5. F* = y1 - 2y2 + 5x1 ® min 2y1 + 2y2 + 4y3 ≥ 18
Вопрос 2. Какая из задач является двойственной по отношению к задаче:
F = 3x1 + 3x2 – 4x3 ® max
2x1 + x2 – 3x3 ≥ 18
4x1 – 5x3 ≤12
3x1 – 2x2 + x3 ≥ 14
x1, x2, x3 ≥ 0
1. F* = 3y1 + 3y2 – 4y3 ® min
2y1 + y2 – 3y3 ≥ 18
4y1 - 5y3 ≥ 12
3y1 - 2y2 +y3 ≥ 14
y1, y2, y3 ≥ 0
2. F* = 3y1 + 3y2 – 4y3 ® min
2y1 + 4y2 + 3y3 ≥ 18
y1 – y2 - 2y3 ≤ 12
- 3y1 - 5y2 + y3 ≥ 14
y1, y2, y3 ≥ 0
3. F* = 18y1 + 12y2 + 14y3 ® min
2y1 + 4y2 + 3y3 ≥ 3
y1 – y2 - 2y3 ≥ 3
- 3y1 - 5y2 + y3 ≥ - 4
y1, y2, y3 ≥ 0
4. F* = 18y1 + 12y2 - 14y3 ® min
- 2y1 + 4y2 -3y3 ≥ 3
- y1 + 2y3 - 2y3 ≥ 3
3y1 - 5y2 - y3 ≥ - 4
y1, y2, y3 ≥ 0
5. F* = 18y1 + 12y2 + 14y3 ® min
2y1 + 4y2 + 3y3 ≥ 3
y1 - 2y3 ≤ 3
- 3y1 - 5y2 + y3 ≥ - 4
y1, y2, y3 ≥ 0
Вопрос 3. Какая из задач является двойственной по отношению к задаче:
F = - 3x1 + 4x2 – 6x3 ® max
2x1 + 3x2 – x3 ≥ 8
-3x1 + 2x2 – 2x3 = 10
5x1 – 4x2 + x3 ≥ 7
x1, x2, x3 ≥ 0
1. F* = -3y1 + 4y2 - 6y3 ® min
2y1 + 3y2 - y3 ≥ 8
- 3y1 + 2y2 - 2y3 ≥ 10
5y1 - 4y2 + y3 ≥ 7
y1, y2, y3 ≥ 0
2. F* = -3y1 + 4y2 - 6y3 ® min
2y1 - 3y2 +5y3 ≥ 8
3y1 + 2y2 - 4y3 ≥ 10
-y1 - 2y2 + y3 ≥ 7
y1, y2, y3 ≥ 0
3. F* = 8y1 + 10y2 + 7y3 ® min
2y1 + 3y2 - y3 ≥ - 3
- 3y1 + 2y2 - 2y3 ≥ 4
5y1 - 4y2 + y3 ≥ - 6
y1, y2, y3 ≥ 0
4. F* = 8y1 + 10y2 + 7y3 ® min
2y1 - 3y2 + 5y3 ≤ - 3
3y1 + 2y2 - 4y3 ≤ 4
-y1 - 2y2 + y3 ≤ - 6
y1, y2, y3 ≥ 0
5. F* = 8y1 + 10y2 + 7y3 ® min
2y1 + 3y2 - y3 ≥- 3
- 3y1 + 2y2 - 2y3 ≥ 4
5y1 - 4y2 + y3 ≥ - 6
y1, y2, y3 ≥ 0
Вопрос 4. Исходная задача линейного программирования имеет оптимальный план со значением целевой функции Fmax = 10. Какое из чисел является значением целевой функции F*minдвойственной задачи?
1. 0
2. 5
3. 10
4. 20
5. ...
Вопрос 5. Геометрическая интерпретация решения исходной задачи линейного программирования, состоящей в максимизации целевой функции, приведена на рисунке:
Укажите решение двойственной задачи линейного программирования.
1. x* = (0;2)
2. x* = (2; 0)
3. x* = (28; 1; 0; 0)
4. x* - пустоемножество
5. x * = (2; 0; 0; 5)
Задание 15
Вопрос 1. Используя двойственный симплекс метод, найдите решение задачи:
F = - 4x1 - 7x2 – 8x3 – 5x4 ® max
x1 + x2 + 2x4 ≥ 4
2x1 + x2 + 2x3 ≥ 6
x1, x2, x3, x4 ≥ 0
1. ... при
2. ... при
3. ... F max = 23 при x * = ( 5; 1; - 2)
4. ... при F max =-29/2
5. F max = -36 при x * = ( 2; 0; 1; 2)
Вопрос 2. Используя двойственный симплекс метод, найдите решение задачи:
F = 5x1 + 6x2 +x3 + x4 ® min
1.5 x1 + 3x2 – x3 + x4 ≥ 18
3x1 + 2x3 - 4x4 ≥ 24
x1, x2, x3, x4 ≥ 0
1. ...
2. ... при
3. Fmin = 52 при x* = (8; 2; 0; 0)
4. Fmin = 52 при x* = (2; 7; 3; - 3)
5. Fmin = 32 при x* = (8; 4; 12; 6)
Вопрос 3. Используя двойственный симплекс метод, найдите решение задачи:
F = x1 + 3x2 +4x3 + 2x4 ® min
x1 - x2 + 4x3 + 5x4 ≥ 27
2x1 + 3x2 – x3 + 4x4 ≥ 24
x1, x2, x3, x4 ≥ 0
1. Fmin = 21 при x* = (0; 3; 0; 6)
2. Fmin =53 при x* = (5; 8; 5; 2)
3. Fmin = 59 при x* = (28; 1; 0; 0)
4. Fmin = 12 при x* = (2; 0; 0; 5)
5. Fmin = 11 при x* = (1; 0; 0; 6)
Вопрос 4. Укажите математическую модель для транспортной задачи. На трех складах оптовой базы сосредоточен однородный груз в количествах 160, 60, 80 единиц. Этот груз необходимо перевезти в четыре магазина. Каждый из магазинов должен получить соответственно 120, 40, 60 и 80 единиц груза. Тарифы перевозок единицы груза из каждого из складов во все магазины задаются матрицей ... Составить такой план перевозок, при котором общая стоимость перевозок является минимальной.