Автор работы: Пользователь скрыл имя, 07 Мая 2015 в 14:39, реферат
Математика в жизни человека занимает особое место. Мы настолько срослись с ней, что попросту не замечаем ее. А ведь математика уже при рождении человека применяется: рост, вес.
Математика - одна из древнейших наук. Не существует таких явлений природы, технических или социальных процессов, которые были бы предметом изучения математики, но при этом не относились к явлениям физическим, биологическим, химическим, инженерным или социальным.
Естественные науки и математика составляют основу научно-технического знания и играют огромную роль в формировании готовности будущего специалиста к профессиональной деятельности.
ВВЕДЕНИЕ 3
1 ЗНАЧЕНИЕ МАТЕМАТИКИ ПРИ ПОЛУЧЕНИИ ОБРАЗОВАНИЯ 4
2 ПОЛОЖЕНИЕ МАТЕМАТИКИ В СОВРЕМЕННОМ ПРОФЕССИОНАЛЬНОМ МИРЕ 5
ЗАКЛЮЧЕНИЕ 7
СПИСОК ИСТОЧНИКОВ И ЛИТЕРАТУРЫ 9
Метод Гаусса включает в себя прямой (приведение расширенной матрицы к ступенчатому виду, то есть получение нулей под главной диагональю) и обратный (получение нулей над главной диагональю расширенной матрицы) ходы. Прямой ход и называется методом Гаусса, обратный - методом Гаусса-Жордана, который отличается от первого только последовательностью исключения переменных.
Метод Гаусса идеально подходит для решения систем содержащих больше трех линейных уравнений, для решения систем уравнений, которые не являются квадратными (чего не скажешь про метод Крамера иматричный метод). То есть метод Гаусса - наиболее универсальный метод для нахождения решения любой системы линейных уравнений, он работает в случае, когда система имеет бесконечно много решений или несовместна.
Задание. Решить СЛАУ методом Гаусса.
Решение. Выпишем расширенную матрицу системы и при помощи элементарных преобразований над ее строками приведем эту матрицу к ступенчатому виду (прямой ход) и далее выполним обратный ход метода Гаусса (сделаем нули выше главной диагонали). Вначале поменяем первую и вторую строку, чтобы элемент равнялся 1 (это мы делаем для упрощения вычислений):
Далее делаем нули под главной диагональю в первом столбце. Для этого от второй строки отнимаем две первых, от третьей - три первых:
Все элементы третьей строки делим на два (или, что тоже самое, умножаем на ):
Далее делаем нули во втором столбце под главной диагональю, для удобства вычислений поменяем местами вторую и третью строки, чтобы диагональный элемент равнялся 1:
От третьей строки отнимаем вторую, умноженную на 3:
Умножив третью строку на , получаем:
Проведем теперь обратный ход метода Гаусса (метод Гассу-Жордана), то есть сделаем нули над главной диагональю. Начнем с элементов третьего столбца. Надо обнулить элемент , для этого от второй строки отнимем третью:
Далее обнуляем недиагональные элементы второго столбца, к первой строке прибавляем вторую:
Полученной матрице соответствует система
Ответ.
На втором этапе последовательно
находятся все неизвестные, начиная с
предпоследней.
Метод Гаусса идеально подходит
для решения систем содержащих больше
трех линейных уравнений.