Основные функции математической логики

Автор работы: Пользователь скрыл имя, 23 Октября 2014 в 17:54, реферат

Описание работы

Слово логика означает совокупность правил, которым подчиняется процесс мышления. Сам термин "логика" происходит от древнегреческого «logos», означающего "слово, мысль, понятие, рассуждение, закон". Формальная логика - наука о формах и законах мышления. Законы логики отражают в сознании человека свойства, связи и отношения объектов окружающего мира. Логика как наука позволяет строить формальные модели окружающего мира, отвлекаясь от содержательной стороны. Основными формами мышления являются понятия, суждения и умозаключения.

Содержание работы

1. Основные понятия формальной логики;
2. Логические выражения и логические операции.
3. Логические функции:
1) инверсия;
2) конъюнкция;
3) дизъюнкция;
4) импликация и эквивалентность.

Файлы: 1 файл

Информатика.docx

— 22.33 Кб (Скачать файл)

           

                 АО «Медицинский университет  Астана»

Кафедра информатики, медбиофизики с курсом биостатистики.

 

 

 

 

   Реферат

 

на тему:  основные функции математической логики

 

 

                                                                                                  Выполнила: студентка 132 группы 

                                                                                                                             ОМ Шырланова С.

                                                                                                  Проверила: ст. преподаватель

                                                                                                  Чудиновских В 

 

 

 

                               Астана 2014

План

  1. Основные понятия формальной логики;
  2. Логические выражения и логические операции.
  3. Логические функции:

     1) инверсия;

     2) конъюнкция;

     3) дизъюнкция;

     4) импликация и эквивалентность.

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Основные понятия формальной логики

 

Слово логика означает совокупность правил, которым подчиняется процесс мышления. Сам термин "логика" происходит от древнегреческого «logos», означающего "слово, мысль, понятие, рассуждение, закон". Формальная логика - наука о формах и законах мышления. Законы логики отражают в сознании человека свойства, связи и отношения объектов окружающего мира. Логика как наука позволяет строить формальные модели окружающего мира, отвлекаясь от содержательной стороны. Основными формами мышления являются понятия, суждения и умозаключения.

     Понятие - это форма  мышления, которая выделяет существенные  признаки предмета или класса  предметов, отличающие его от  других. Например, компьютер, человек, ученики.

     Суждения - это форма  мышления, в которой утверждается  или отрицается связь между  предметом и его признаком, отношения  между предметами или факт  существования предмета и которая  может быть либо истинной, либо  ложной. Языковой формой выражения  суждения является повествовательное  предложение. Вопросительные и побудительные  предложения суждениями не являются.

     Суждения рассматриваются  не с точки зрения их смысла  и содержания, а только с точки  зрения их истинности или ложности. Истинным будет суждение, в котором  связь понятий правильно отражает  свойства и отношения реальных  объектов. "Дважды два равно  четырем" - истинное суждение, а  вот "Процессор предназначен для  печати" - ложное. Суждения могут  быть простыми и сложными. "Весна  наступила, и грачи прилетели" - сложное суждение, состоящее из  двух простых. Простые суждения (высказывания) выражают связь двух понятий. Сложные   состоят из нескольких простых суждений.

     Умозаключение - прием  мышления, позволяющий на основе  одного или нескольких суждений-посылок  получить новое суждение (знание  или вывод).

     Примерами умозаключений  являются доказательства теорем  в геометрии. Посылками умозаключения  по правилам формальной логики  могут быть только истинные суждения. Тогда и умозаключение будет истинным. Иначе можно прийти к ложному умозаключению.

     Математическая логика  изучает вопросы применения математических  методов для решения логических  задач и построения логических  схем, которые лежат в основе  работы любого компьютера. Суждения  в математической логике называют  высказываниями или логическими  выражениями. Подобно тому, как для  описания действий над переменными  был разработан раздел математики  алгебра, так и для обработки  логических выражений в математической  логике была создана алгебра  высказываний  или алгебра логики.

 

  1. Логические выражения и логические операции

 

Логическое выражение - это символическая запись, состоящая из логических величин (констант или переменных), объединенных логическими операциями (связками).

  1. Логические функции

     Логическая функция - это функция, в которой переменные  принимают только два значения: логическая единица или логический  ноль. Истинность или ложность  сложных суждений представляет  собой функцию истинности или  ложности простых. Эту функцию  называют булевой функцией суждений.

     Любая логическая  функция может быть задана  с помощью таблицы истинности, в левой части которой записывается  набор аргументов, а в правой  части - соответствующие значения  логической функции.

     При построении таблицы  истинности необходимо учитывать  порядок выполнения логических  операций. Операции в логическом  выражении выполняются слева  направо с учетом скобок в  следующем порядке:

     1. инверсия;

     2. конъюнкция;

     3. дизъюнкция;

     4. импликация и эквивалентность.

     В булевой алгебре  простым высказываниям ставятся  в соответствие логические переменные, значение которых равно 1, если  высказывание истинно, и 0, если высказывание ложно. Логическое отрицание (инверсия).

     В обыденной речи  мы часто пользуемся словом "НЕ", или словами "НЕВЕРНО, ЧТО", когда  хотим что-то отрицать. Пусть, например, кто-то сказал: "Тоска зеленая." (Обозначим это высказывание А). Если Вы не согласны, Вы скажете: " Тоска НЕ зеленая."  Или: " Неверно, что тоска зеленая." (Ваше высказывание обозначим В). Нетрудно заметить, что значения истинности высказываний А и В находятся в определенной связи: если А истинно, то В ложно, и наоборот. Операция, с помощью которой из высказывания А получается высказывание В, называется логическим отрицанием и само высказывание В называется отрицанием высказывания А и обозначается бозначаются логические переменные буквами латинского алфавита.

 

Логическое умножение (конъюнкция) от латинского conjunctio - союз, связь.

     Если два высказывания  соединены союзом "И", то полученное  сложное высказывание обычно  считается истинным тогда и  только тогда, когда истинны оба  составляющие его высказывания. Если хотя бы одно из составляющих  высказываний ложно, то и полученное  из них с помощью союза "И" сложное высказывание также считается  ложным. Например, возьмем два высказывания: "У кота есть хвост" (А), "У  зайца есть хвост" (В). Сложное  высказывание "У кота есть хвост  и у зайца есть хвост" истинно, т.к. истинны оба высказывания А и В. Но если взять другие высказывания: "У кота длинный хвост" (С), "У зайца длинный хвост" (D), то сложное высказывание "У кота длинный хвост и у зайца длинный хвост" будет ложным, т.к. ложно высказывание (D). Таким образом, исходя из обычного смысла союза "И", приходим к определению соответствующей логической операции - конъюнкции.

     Таким образом, конъюнкцией  двух высказываний А и В называется такое высказывание, которое истинно тогда и только тогда, когда истинны оба высказывания А и В.

     Конъюнкцию высказываний А и В мы обозначим: A & B. Знак & - амперсант - читается как английское "and" (помните Procter & Gamble или Wash & Go?). Часто встречается обозначение А Λ В. Иногда, для краткости, пишут просто АВ или .

  Логическое сложение (дизъюнкция) от латинского disjunctio - разобщение, различие.

     Если два высказывания  соединены союзом "ИЛИ", то полученное  сложное высказывание обычно  считается истинным, когда истинно, хотя бы одно из составляющих  высказываний. Например, возьмем два  высказывания: "Мел черный." (А), "Доска черная." (В). Высказывание "Мел черный или доска черная" будет истинным, т.к. одно из исходных высказываний (В) истинно.

     Таким образом, дизъюнкцией  двух высказываний называется  такое новое высказывание, которое  истинно тогда и только тогда, когда истинно хотя бы одно  из этих высказываний.

     Дизъюнкцию высказываний А и В мы обозначим символом А V В и будем читать: А или В

  Логическое следование (импликация) от латинского implico - тесно связываю.

     В наших рассуждениях, особенно в математических доказательствах, мы часто пользуемся сложными  высказываниями, образованными с  помощью слов "если..., то...". Здесь  высказывание, расположенное после  слова "если", называется основанием  или посылкой, а высказывание, расположенное  после слова "то", называется  следствием или заключением.

     Рассмотрим пример  из арифметики. Вам должно быть  известно, что утверждение "если  каждое слагаемое делится на 3, то и сумма делится на 3" истинно, т.е. из высказывания "каждое слагаемое  делится на 3" следует высказывание "сумма делится на 3". Посмотрим, какие наборы значений истинности  посылки и заключения возможны, когда истинно все утверждение. Возьмем, например, в качестве слагаемых  числа 6 и 9. В этом случае истинны  и посылка, и заключение, и все  утверждение. Если же взять числа 4 и 5, то посылка будет ложной, а заключение истинным. Для чисел 4 и 7 и посылка и заключение ложны. (Если Вы сомневаетесь в истинности высказывания для последнего случая попробуйте произнести его в сослагательном наклонении: если бы числа 4 и 7 делились бы на 3, то и их сумма делилась бы на 3). Очевидно, что только один случай невозможен: мы не найдем таких двух слагаемых, чтобы каждое из них делилось на 3, а их сумма не делилась на 3, т.е. чтобы посылка была истинной, а заключение ложным. Из истины не может следовать ложь, иначе логика теряет смысл. Высказывание "Если А, то В" с логической точки зрения имеет тот же смысл, что и высказывание "неверно, что А истинно и В ложно". Это означает, что функцию импликации можно заменить комбинацией двух функций (отрицания и конъюнкции). Обычно, когда мы хотим установить ложность высказывания "Если А, то В", мы стараемся показать, что возможен случай, когда А истинно, а В ложно (доказательство "от противного"). Обозначим импликацию символом => и запись  будем читать: "Из А следует В".

Логическое тождество (эквиваленция).

     Интуитивно можно  догадаться, что высказывания эквивалентны (равносильны), когда их значения  истинности одинаковы. Например, эквивалентны высказывания: "железо тяжелое" и "пух легкий", так же как и высказывания: "железо легкое" и "пух тяжелый". Обозначим эквиваленцию символом  и запись  будем читать "А эквивалентно В", или "А равносильно В", или "А, если и только если В".

     Таким образом, эквиваленцией двух высказываний А и В называется такое высказывание, которое истинно тогда и только тогда, когда оба эти высказывания А и В истинны или оба ложны.

     Логическая функция - это функция, в которой переменные принимают только два значения: логическая единица или логический ноль. Истинность или ложность сложных суждений представляет собой функцию истинности или ложности простых. Эту функцию называют булевой функцией суждений.


Информация о работе Основные функции математической логики