Понятие как форма мышления

Автор работы: Пользователь скрыл имя, 21 Марта 2013 в 11:59, реферат

Описание работы

В современной логике, особенно математической, которая ориентируется на дедуктивные, доказательные рассуждения, проблема понятия утратила то значение, кота-рая она имела в традиционной логике. Со времен Г. Фреге понятие рассматривается как пропозициональная функция или функция-высказывание (лат. propositio – предложение), которая удовлетворяется теми значениями аргументов, которые составляют объем понятия.

Содержание работы

Введение............................................................................................................2
1.Понятие как форма мышления......................................................................3
2. Содержание и объем понятия.......................................................................5
3. Закон обратного отношения между объемом и содержанием понятия......7
4. Отношения между понятиями.......................................................................9
5. Обобщение и ограничение понятий.............................................................14
Заключение.......................................................................................................16
Список используемой литературы....................................................................17

Файлы: 1 файл

понятия как форма мышления.rtf

— 201.15 Кб (Скачать файл)

 

 


Рис.3В

 

Несравнимые (внеположенные) понятия - это понятия, объемы которых либо полностью исключают друг друга, либо находятся в отношении противоречия друг другу. Так, объемы понятий "треугольник" и "растение" не содержат ни одного общего элемента, их пересечение - пусто. То же самое можно сказать о понятиях, которые употребляются в хорошо известном утверждении, характеризующем несравнимость: "В огороде бузина, а в Киеве дядька".

Особый интерес представляют понятия, объемы которых находятся в отношении контрарности (противности) друг другу, как, например, "белый" и "черный", "холодный", и "горячий", "длинный" и "короткий" и т.д., которые представляют собой свойства, расположенные на границе соответствующих множеств свойств. Между "белым" и "черным", "холодным" и "горячим" и т.д. располагаются промежуточные свойства. В силу этого объемы контрарных понятий занимают крайние положения на круговых диаграммах (рис. 4).

 


Рис.4

 


Рис.5

 

Отношение контрадикторности (противоречивости) между объемами понятий существует тогда, когда они, с одной стороны, отрицают друг друга, а с другой исчерпывают объем целого понятия (рис. 5).

В языке противоречие выражается отрицательной частицей перед словом, выражающим свойство. Примерами могут служить свойства, выражающие такие понятия, как белый и не белый, холодный и не холодный, черный и не черный и т.п. На диаграмме (см. рис. 5) объемы таких понятий составляют две половины круга, хотя гораздо лучше представить объем положительного понятия кругом, а отрицательного - прямоугольником, в который входит этот круг, поскольку противоположное (отрицательное) понятие содержит обычно большее число элементов (рис.6).

 

 не-А


 Рис.6

 

Поскольку объемы понятий образуют классы (или множества) предметов, элементы которых обладают признаками, сформулированными в их содержании, то над этими классами (или множествами) можно производить определенные логические операции. Они тождественны операциям, которые изучаются в теории множеств.

Объединением классов (или множеств) называют класс, который содержит в своем составе все элементы, входящие в каждый отдельный класс. Если обозначить отдельные классы через А1, А2, А3, …, Аn, то объединенное множество можно представить как дизъюнкцию (или логическое сложение) всех перечисленных классов (или множеств):

i = А1U А2U А3 … UАn.

Например, объединение плоских фигур будет состоять из класса треугольников, класса четырехугольников, окружностей и других фигур, класс деревьев - из классов хвойных, лиственных и других деревьев.

Пересечением (или умножением) классов называется новый класс, который содержит в своем составе те и только те элементы, которые входят в каждый из отдельных классов. Иначе говоря, он содержит элементы, общие всем отдельным классам. Поэтому сама операция пересечения классов иногда называется взятием их общей части. Обозначив отдельные классы через А1, А2, А3, …, Аn, их пересечение можно представить в виде:

i = А1, ^А2 3, …, ^Аn, где знак ^ обозначает операцию пересечения, умножения или конъюнкции классов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Обобщение и ограничение понятий.

Под обобщением понятий подразумевается операция перехода от понятий меньшего объема к понятиям большего объема, а под ограничением - обратный процесс перехода от понятий большего объема к понятиям меньшего объема. Однако в отличие от предыдущего случая отношений понятий с фиксированными объемами, при обобщении и ограничении понятий происходит также изменение содержания понятий, поскольку при обобщении некоторые признаки исключаются, а при ограничении, наоборот, прибавляются. Это непосредственно следует из закона обратного отношения между объемом и содержанием понятия.

Обобщение понятий неразрывно связано с процессом абстрагирования, в результате чего отвлекаются от тех признаков, которые в ходе познания оказываются несущественными, и потому опускаются. Процесс ограничения связан с противоположным движением мысли, который называется конкретизацией, или точнее спецификацией. Только благодаря конкретизации общие понятия можно применять для исследования частных случаев.

Наиболее ясно обобщение и ограничение понятий прослеживается в математике, причем в чистой, (теоретической) математике преобладает процесс обобщения понятий, а в приложениях математики их конкретизация.

Хотя с логической точки зрения такие обобщения понятий представляются вполне ясными и даже очевидными, но исторически новые понятия и основанные на них теории находили признание не сразу, но без борьбы мнений и конфликтов. Достаточно лишь отметить, например, с какими трудностями ученые столкнулись при обобщении понятия числа и введении понятий иррациональных и мнимых чисел, а в недалеком прошлом - понятий о неевклидовых пространствах и бесконечных множествах. В неменьшей степени конфликты сопровождали обобщения и введение новых понятий в астрономии мира, например, гелиоцентрической системы мира (вместо геоцентрической птолемеевой системы мира), в физике, биологии и других науках.

 

Заключение.

Итак, обобщая все вопросы о понятии, я выяснила, что большое внимание в теоретической логике уделяется понятию, которое обычно определяется как одна из основных форм мышления. Переход от чувственной ступени познания к познанию на уровне абстрактного мышления характеризуют как переход от отражения мира в форме ощущений, восприятий и представлений к отражению мира в понятиях и формулируемых на их основе суждениях, умозаключениях и, в конечном счете, научных теориях.

 

Список используемой литературы.

1. Берков В.Ф. Логика: Уч. - Мн: НТООО «ТетраСистемс», 2008.

2. Бойко А. П. Логика: Учебное пособие / А. П. Бойко. - М., 2009.

3. Гетманова А. Д. Учебник по логике / А. Д. Гетманова. - М, 2008.

4. Иванов Е. А. Логика / Е. А. Иванов. - М., 2008.

 

 

 

 

 

 

 

 

 

 

 

 


Информация о работе Понятие как форма мышления