Равносильные преобразования

Автор работы: Пользователь скрыл имя, 28 Марта 2013 в 15:06, контрольная работа

Описание работы

1) Х ® Y = ØY ®ØX,
4) ØX ®Y = ØY ® Х
2) Х® (Y®Z) = (Х®Y) ®Z,
5) Х ® (Y ® Z) = X & Y® Z,
3) Ø(X ® Y ) = ØX ®ØY,
6) X«Y = ØX«ØY?

Файлы: 1 файл

Задание на равносильные преобразования.doc

— 54.50 Кб (Скачать файл)

Задание на равносильные преобразования.

 

 

1. Путем равносильных преобразований показать, что следующие формулы тождественно истинны:

1) ;

7) ;

2) ;

8) ;

3) ;

9) ;

4) ;

10) ;

5) ;

11) ;

6) ;

12) .


 

 

2.  Будут ли  следующие формулы равносильны: 

1) Х ® Y = ØY ®ØX,

4) ØX ®Y = ØY ® Х

2) Х® (Y®Z) = (Х®Y) ®Z,

5) Х ® (Y ® Z) = X & Y® Z,

3) Ø(X ® Y ) = ØX ®ØY,

6) X«Y = ØX«ØY?


 

3. Доказать равносильность формул:

1) Ø[(XÚY)&(X&ØZ)] = X®Z,                     

5) (X&ØY)ÚØ(X&Y) = Ø(X&Y)

2) Ø[(XÚØY)&Y]&Ø(ØX&Y) = ØY

6) Ø [(X & Y) Ú ØZ] = Ø (Z®X) Ú Ø(Z®Y),

3) (X & Y) Ú (ØX & Y) Ú (X & ØY) = Х Ú Y,

4) (ØX & Y & Z) Ú (ØX & ØY & Z) Ú (Y & Z) = (ØXÚY)&Z.


 

Замечание. ØX означает  отрицание X.


Информация о работе Равносильные преобразования