Автор работы: Пользователь скрыл имя, 13 Декабря 2013 в 16:46, реферат
В развитии геометрии можно указать четыре основных периода, переходы между которыми обозначали качественное изменение геометрии. Об этом далее.
получена, если секущая плоскость пересекает обе полости конической поверхности, не проходя через вершину.
Третий период развития геометрии. Аналитическая геометрия изучает фигуры и преобразования, задаваемые алгебраическими уравнениями в прямоугольных координатах, используя при этом методы алгебры. Дифференциальная геометрия, возникшая в 18 в. в результате работ Л. Эйлера, геометрия Монжа и др., исследует уже любые достаточно гладкие кривые линии и поверхности, их семейства (т. е. их непрерывные совокупности) и преобразования. Её название связано в основном с её методом, исходящим из дифференциального исчисления. К 1-й половине 17 в. относится зарождение проективной геометрии в работах Ж. Дезарга и Б. Паскаля. Она возникла из задач изображения тел на плоскости; её первый предмет составляют те свойства плоских фигур, которые сохраняются при проектировании с одной плоскости на другую из любой точки. Окончательное оформление и систематическое изложение этих новых направлений геометрии были даны в 18 - начале 19 вв. Эйлером для аналитической геометрии (1748), Монжем для дифференциальной геометрия (1795), Ж. Понселе для проективной геометрии (1822), причём само учение о геометрическом изображении (в прямой связи с задачами черчения) было ещё раньше (1799) развито и приведено в систему Монжем в виде начертательной геометрии. Во всех этих новых дисциплинах основы (аксиомы, исходные понятия) геометрии оставались неизменными, круг же изучаемых фигур и их свойств, а также применяемых методов расширялся.
В элементарной геометрии
Эйлер обнаружил несколько
Три высоты треугольника пересекаются в одной точке (ортоцентре).
В треугольнике ортоцентр, центр описанной окружности и центр тяжести лежат на одной прямой — «прямой Эйлера».
Основания трёх высот произвольного треугольника, середины трёх его сторон и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат все на одной окружности (окружности Эйлера).
Число вершин (В), граней (Г) и рёбер (Р) у любого выпуклого многогранника связаны простой формулой: В + Г = Р + 2.
Второй том «Введения в анализ бесконечно малых» (1748) — это первый в мире учебник по аналитической геометрии и основам дифференциальной геометрии. Термин аффинные преобразования впервые введён в этой книге вместе с теорией таких преобразований.
В 1760 году вышли фундаментальные «Исследования о кривизне поверхностей». Эйлер обнаружил, что в каждой точке гладкой поверхности имеются два нормальных сечения с минимальным и максимальным радиусами кривизны, и плоскости их взаимно перпендикулярны. Вывел формулу связи кривизны сечения поверхности с главными кривизнами.
1771 год: опубликовано сочинение «О телах, поверхность которых можно развернуть на плоскость». В этой работе введено понятие развёртывающейся поверхности, то есть поверхности, которая может быть наложена на плоскость без складок и разрывов. Эйлер, однако, даёт здесь вполне общую теорию метрики, от которой зависит вся внутренняя геометрия поверхности. Позже исследование метрики становится у него основным инструментом теории поверхностей.
Четвёртый период в развитии геометрия открывается построением Н. И. Лобачевским в 1826 новой, неевклидовой геометрия , называемой теперь Лобачевского геометрией. Независимо от Лобачевского в 1832 ту же геометрию построил Я. Больяй (те же идеи развивал К. Гаусс, но он не опубликовал их). Лобачевский рассматривал свою геометрию как возможную теорию пространственных отношений; однако она оставалась гипотетической, пока не был выяснен (в 1868) её реальный смысл и тем самым было дано её полное обоснование. Переворот в геометрии, произведённый Лобачевским, по своему значению не уступает ни одному из переворотов в естествознании, и недаром Лобачевский был назван "Коперником геометрии". В его идеях были намечены три принципа, определившие новое развитие геометрии. Первый принцип заключается в том, что логически мыслима не одна евклидова геометрия , но и другие "геометрии". Второй принцип - это принцип самого построения новых геометрических теорий путём видоизменения и обобщения основных положений евклидовой геометрии. Третий принцип состоит в том, что истинность геометрической теории, в смысле соответствия реальным свойствам пространства, может быть проверена лишь физическим исследованием и не исключено, что такие исследования установят, в этом смысле, неточность евклидовой геометрии. Современная физика подтвердила это. Однако от этого не теряется математическая точность евклидовой геометрии, т.к. она определяется логической состоятельностью (непротиворечивостью) этой геометрии. Точно так же в отношении любой геометрической теории нужно различать их физическую и математическую истинность; первая состоит в проверяемом опытом соответствии действительности, вторая - в логической непротиворечивости. Лобачевский дал, т. о., материалистическую установку философии математики.
Заключение
Наука геометрия очень важна для человека. Геометрия развивалась за несколько столетий до нашей эры в Вавилоне, Китае, Египте и Греции. Большой вклад в развитие геометрии внесли известные учёные: Евклид и его книга под названием «Начала», Архимед, которому принадлежит формула для определения площади треугольника через три его стороны, Менелай, которым были написаны два сочинения «О вычислении хорд» в 6 книгах и «Сферика» в 3 книгах. Наука геометрия и сейчас развивается. Мы легко решаем задачи, для которых в древности потребовалось бы много времени и сил.