Автор работы: Пользователь скрыл имя, 03 Мая 2013 в 15:24, реферат
Линейные транспортные задачи составляют особый класс задач линейного программирования. Задача заключается в отыскании такого плана перевозок продукции с m складов в пункт назначения n который, потребовал бы минимальных затрат. Если потребитель j получает единицу продукции (по прямой дороге) со склада i, то возникают издержки С i j . Предполагается, что транспортные расходы пропорциональны перевозимому количеству продукции, т.е. перевозка k единиц продукции вызывает расходы k С i j.
1. Линейная транспортная задача – 3 стр.
2. Математическая модель транспортной задачи – 4 стр.
3. Составление опорного плана – 5 стр.
4. Распределительный метод достижения оптимального плана – 8 стр.
5. Решение транспортной задачи методом потенциалов – 11 стр.
Метод последовательного улучшения плана перевозок и состоит в том, что в таблице отыскиваются циклы с отрицательной ценой, по ним перемещаются перевозки, и план улучшается до тех пор, пока циклов с отрицательной ценой уже не останется. При улучшении плана циклическими переносами, как правило, пользуются приёмом, заимствованным из симплекс-метода: при каждом шаге (цикле) заменяют одну свободную переменную на базисную, то есть заполняют одну свободную клетку и взамен того освобождают одну из базисных клеток. При этом общее число базисных клеток остаётся неизменным и равным m + n - 1 . Этот метод удобен тем, что для него легче находить подходящие циклы.
Можно доказать, что для любой свободной клетке транспортной таблице всегда существует цикл и притом единственный, одна из вершин которого лежит в этой свободной клетке, а все остальные в базисных клетках. Если цена такого цикла, с плюсом в свободной клетке, отрицательна, то план можно улучшить перемещением перевозок по данному циклу. Количество единиц груза k, которое можно переместить, определяется минимальным значением перевозок, стоящих в отрицательных вершинах цикла (если переместить большее число единиц груза, возникнут отрицательные перевозки).
Применённый выше метод отыскания оптимального решения транспортной задачи называется распределённым; он состоит в непосредственном отыскании свободных клеток с отрицательной ценой цикла и в перемещении перевозок по этому циклу.
Распределительный метод решения транспортной задачи, с которым мы познакомились, обладает одним недостатком: нужно отыскивать циклы для всех свободных клеток и находить их цены. От этой трудоёмкой работы нас избавляет специальный метод решения транспортной задачи, который называется методом потенциалов.
5. Решение транспортной задачи методом потенциалов.
Этот метод позволяет автоматически выделять циклы с отрицательной ценой и определять их цены.
Пусть имеется транспортная задача с балансовыми условиями
Стоимость перевозки единицы груза из Ai в Bj равна C ij ; таблица стоимостей задана. Требуется найти план перевозок xij, который удовлетворял бы балансовым условиям и при этом стоимость всех перевозок бала минимальна.
Идея метода потенциалов для решения транспортной задачи сводиться к следующему. Представим себе что каждый из пунктов отправления Ai вносит за перевозку единицы груза (всё равно куда) какую-то сумму ai ; в свою очередь каждый из пунктов назначения Bj также вносит за перевозку груза (куда угодно) сумму bj . Эти платежи передаются некоторому третьему лицу (“перевозчику“). Обозначим ai + bj = čij ( i=1..m ;j=1..n) и будем называть величину čij “псевдостоимостью” перевозки единицы груза из Ai в Bj. Заметим, что платежи ai и bj не обязательно должны быть положительными; не исключено, что “перевозчик” сам платит тому или другому пункту какую-то премию за перевозку. Также надо отметить, что суммарная псевдостоимость любого допустимого плана перевозок при заданных платежах (ai и bj ) одна и та же и от плана к плану не меняется.
До сих пор мы никак не связывали платежи (ai и bj) и псевдостоимости čij с истинными стоимостями перевозок C ij. Теперь мы установим между ними связь. Предположим, что план xij невырожденный (число базисных клеток в таблице перевозок ровно m + n -1). Для всех этих клеток xij >0. Определим платежи (ai и bj) так, чтобы во всех базисных клетках псевдостоимости были ровны стоимостям:
čij = ai + bj = сij , при xij >0.
Что касается свободных клеток (где xij = 0), то в них соотношение между псевдостоимостями и стоимостями может быть, какое угодно.
Оказывается соотношение
между псевдостоимостями и
ai + bj = čij= сij ,
а для всех свободных клеток xij =0,
ai + bj = čij≤ сij ,
то план является оптимальным и никакими способами улучшен быть не может. Нетрудно показать, что это теорема справедлива также для вырожденного плана, и некоторые из базисных переменных равны нулю. План обладающий свойством :
čij= сij (для всех базисных клеток ) (1)
čij≤ сij ( для всех свободных клеток ) (2)
называется потенциальным планом, а соответствующие ему платежи (ai и bj ) — потенциалами пунктов Ai и Bj ( i=1,...,m ; j=1,...,n ). Пользуясь этой терминологией вышеупомянутую теорему можно сформулировать так:
Всякий потенциальный план является оптимальным.
Итак, для решения транспортной задачи нам нужно одно - построить потенциальный план. Оказывается его можно построить методом последовательных приближений, задаваясь сначала какой-то произвольной системой платежей, удовлетворяющей условию (1). При этом в каждой базисной клетке получиться сумма платежей, равная стоимости перевозок в данной клетке; затем, улучшая план следует одновременно менять систему платежей. Так, что они приближаются к потенциалам. При улучшении плана нам помогает следующее свойство платежей и псевдостоимостей: какова бы ни была система платежей (ai и bj ) удовлетворяющая условию (1), для каждой свободной клетки цена цикла пересчёта равна разности между стоимостью и псевдостоимостью в данной клетке : gi,j= сi,j - či,j.
Таким образом, при пользовании
методом потенциалов для решени
Процедура построения потенциального (оптимального) плана состоит в следующем.
В качестве первого приближения к оптимальному плану берётся любой допустимый план (например, построенный способом минимальной стоимости по строке). В этом плане m + n - 1 базисных клеток, где m - число строк, n - число столбцов транспортной таблицы. Для этого плана можно определить платежи (ai и bj ), так, чтобы в каждой базисной клетке выполнялось условие :
ai + bj = сij (3)
Уравнений (3) всего m + n - 1, а число неизвестных равно m + n. Следовательно, одну из этих неизвестных можно задать произвольно (например, равной нулю). После этого из m + n - 1 уравнений (3) можно найти остальные платежи ai, bj, а по ним вычислить псевдостоимости, či,j= ai + bj для каждой свободной клетки.
Таблица №5
ПН ПО |
В1 |
В2 |
В3 |
В4 |
В5 |
ai |
А1 |
10 č = 7 |
8 č = 6 |
5 42 |
6 6 |
9 č = 6 |
a1= 0 |
А2 |
6 4 |
7 č = 5 |
8 č = 4 |
6 č = 5 |
5 26 |
a2= -1 |
А3 |
8 č = 8 |
7 27 |
10 č = 6 |
8 č = 7 |
7 0 |
a3= 1 |
А4 |
7 14 |
5 č = 6 |
4 č = 5 |
6 6 |
8 č = 6 |
a4= 0 |
bj |
b1= 7 |
b2= 6 |
b3= 5 |
b4= 6 |
b5= 6 |
a4 = 0, ®
b4 = 6, так как a4 + b4 = С44 = 6, ®
a1= 0, так как a1 + b4 = С14 = 6, ®
b3 = 5, так как a1 + b3 = С13 = 5, ®
b1 = 7, так как a4 + b1 = С41 = 7, ®
a2= -1, так как a2 + b1 = С21 = 6, ®
b5 = 6, так как a2 + b5 = С25 = 5, ®
a3= 1, так как a3 + b5 = С35 = 7, ®
b2 = 6, так как a3 + b2 = С25 = 7.
Если оказалось, что все эти псевдостоимости не превосходят стоимостей
čij £ сij , £ ³
то план потенциален и, значит, оптимален. Если же хотя бы в одной свободной клетке псевдостоимость больше стоимости (как в нашем примере), то план не является оптимальным и может быть улучшен переносом перевозок по циклу, соответствующему данной свободной клетке. Цена этого цикла ровна разности между стоимостью и псевдостоимостью в этой свободной клетке.
В таблице № 5 мы получили в двух клетках čij ³ сij , теперь можно построить цикл в любой из этих двух клеток. Выгоднее всего строить цикл в той клетке, в которой разность čij - сij максимальна. В нашем случае в обоих клетках разность одинакова (равна 1), поэтому, для построения цикла выберем, например, клетку (4,2):
Таблица №6
ПН ПО |
В1 |
В2 |
В3 |
В4 |
В5 |
ai |
А1 |
10 |
8 |
5 42 |
6 6 |
9 |
0 |
А2 |
6 + 4 |
7 |
8 |
6 |
5 - 26 |
-1 |
А3 |
8 |
7 - 27 |
10 |
8 |
7 + 0 |
1 |
А4 |
7 - 14 |
5 + û |
4 |
6 6 |
8 |
0 |
bj |
7 |
6 |
5 |
6 |
6 |
Теперь будем перемещать по циклу число 14, так как оно является минимальным из чисел, стоящих в клетках, помеченных знаком - . При перемещении мы будем вычитать 14 из клеток со знаком - и прибавлять к клеткам со знаком + .
После этого необходимо подсчитать потенциалы ai и bj и цикл расчетов повторяется.
Итак, мы приходим к следующему алгоритму решения транспортной задачи методом потенциалов.
1. Взять любой опорный план перевозок, в котором отмечены m + n - 1 базисных клеток (остальные клетки свободные).
2. Определить для этого плана платежи (ai и bj ) исходя из условия, чтобы в любой базисной клетке псевдостоимости были равны стоимостям. Один из платежей можно назначить произвольно, например, положить равным нулю.
3. Подсчитать псевдостоимости či,j = ai + bj для всех свободных клеток. Если окажется, что все они не превышают стоимостей, то план оптимален.
4. Если хотя бы в одной свободной клетке псевдостоимость превышает стоимость, следует приступить к улучшению плана путём переброски перевозок по циклу, соответствующему любой свободной клетке с отрицательной ценой (для которой псевдостоимость больше стоимости).
5. После этого заново подсчитываются платежи и псевдостоимости, и, если план ещё не оптимален, процедура улучшения продолжается до тех пор, пока не будет найден оптимальный план.
Так в нашем примере после 2 циклов расчетов получим оптимальный план. При этом стоимость всей перевозки изменялась следующим образом: F0 = 723, F1 = 709, F2 = Fmin = 703.
Следует отметить так же, что оптимальный план может иметь и другой вид, но его стоимость останется такой же Fmin = 703.
Список использованной литературы:
1. Еремин И.И., Астафьев
Н.Н. Введение в теорию
2. Карманов В.Г. Математическое программирование. – М.; Наука, 1986г.
3. Моисеев Н.Н., Иванов Ю.П., Столярова Е.М. Методы оптимизации. – М.; Наука, 1978г.
4. Иванов Ю.П., Лотов А.В. Математические модели в экономике. – М.; Наука, 1979г.
5. Бронштейн И.Н., Семендяев К.А. Справочник по математике. – М.; Наука, 1986г
Информация о работе Решение транспортных задач методом потенциалов