Автор работы: Пользователь скрыл имя, 04 Апреля 2013 в 11:04, реферат
Все это привело компаний-разработчиков к усовершенствованию тех технологий в области воспроизведения информации, которые имеют место быть. Поэтому, эта проблема и стала одной из важных в компьютерной технике. В данном реферате описаны уже существующие типы мониторов, как они появились и вследствие чего, принцип работы некоторых мониторов. Также описаны появление новых технологий, которые приведут нас в мир будущего.
Введение
1. Виды мониторов…………………………………….….……….
1.1. Мониторы с электронно-лучевой трубкой…….….…….…
1.2. Жидкокристаллические мониторы……….……….…….….
1.3. Плазменные мониторы………………………….…….…....
1.4. Пластиковые мониторы…………………………….………
2. Стандарты безопасности……………………………….………
2.1. Стандарт TCO……………………….……………........
2.2. Стандарт MPR II…………………..……….…………..
3. Характеристики мониторов.…………………………….……..
3.1. Типы развертки……………………………………………...
3.2. Разрешающая способность монитора………………..…….
3.3. Частота регенерации…………………………………….…..
3.4. Полоса пропускания……………………………..……..……
4. Тенденции и направления развития мониторов……………..
Заключение
Список использованных источников
Мелітопольський державний педагогічний університет
ОГЛАВЛЕНИЕ
Введение
1. Виды мониторов…………………………………….….……….
1.1. Мониторы с электронно-лучевой трубкой…….….…….…
1.2. Жидкокристаллические мониторы……….……….…….….
1.3. Плазменные мониторы………………………….…….…....
1.4. Пластиковые мониторы…………………………….………
2. Стандарты безопасности……………………………….………
2.1. Стандарт TCO……………………….……………...
2.2. Стандарт MPR II…………………..……….…………..
3. Характеристики мониторов.…………………………….……..
3.1. Типы развертки……………………………………………...
3.2. Разрешающая способность монитора………………..…….
3.3. Частота регенерации…………………………………….…..
3.4. Полоса пропускания……………………………..……..……
4. Тенденции и направления развития мониторов……………..
Заключение
Список использованных источников
ВВЕДЕНИЕ
Монитор - это устройство вывода графической и текстовой информации в форме, доступной пользователю. Мониторы входят в состав любой компьютерной системы. Они являются визуальным каналом связи со всеми прикладными программами и стали жизненно важным компонентом при определении общего качества и удобства эксплуатации всей компьютерной системы. В настоящее время развитие компьютерных технологий требует разработки новых мониторов большего размера и новых возможностей. Создаваемые новые программы по работе с трехмерной графикой уже не могут нормально воспроизводиться на старых мониторах. Все это привело компаний-разработчиков к усовершенствованию тех технологий в области воспроизведения информации, которые имеют место быть. Поэтому, эта проблема и стала одной из важных в компьютерной технике. В данном реферате описаны уже существующие типы мониторов, как они появились и вследствие чего, принцип работы некоторых мониторов. Также описаны появление новых технологий, которые приведут нас в мир будущего.
1. ВИДЫ МОНИТОРОВ
1.1. Мониторы с электронно-лучевой трубкой
Сегодня самый распространенный тип мониторов - это CRT (Cathode ray tube) мониторы. В основе всех подобных мониторов лежит катодно-лучевая трубка, но технически правильно говорить электронно-лучевая трубка (ЭЛТ). Используемая в этом типе мониторов технология была создана много лет назад и первоначально создавалась в качестве специального инструментария для измерения переменного тока, проще говоря - осциллографа. Развитие этой технологии применительно к созданию мониторов за последние годы привело к производству все больших по размеру экранов с высоким качеством и при низкой стоимости. Сегодня найти в магазине 14" монитор очень сложно, а ведь года три четыре назад это был стандарт. Сегодня наблюдается явная тенденция в сторону 17 и 19" экранов.
Рассмотрим принципы работы CRT мониторов.
CRT монитор имеет стеклянную трубку,
внутри которой находится вакуум.
С фронтальной стороны
Для управления электронно-лучевой трубкой необходима и управляющая электроника, качество которой во многом определяет и качество монитора. Кстати, именно разница в качестве управляющей электроники, создаваемой разными производителями, является одним из критериев, определяющих разницу между мониторами с одинаковой электронно-лучевой трубкой.
Понятно, что электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета. Чтобы добиться такого действия, используется специальная маска, чья структура зависит от типа кинескопов, обеспечивающая дискретность (растровость) изображения. ЭЛТ можно разбить на два класса: трехлучевые с дельтаобразным расположением электронных пушек и с планарным расположением электронных пушек. В этих трубках применяются щелевые (Slot mask) и теневые маски (Shadow mask).
Теневая маска
(Shadow mask) - это самый распространенный
тип масок для CRT мониторов. Теневая маска
состоит из металлической сетки перед
частью стеклянной трубки с люминофорным
слоем. Отверстия в металлической сетке
работают как прицел, именно этим обеспечивается
то, что электронный луч попадает только
на требуемые люминофорные элементы и
только в определенных областях. Теневая
маска создает решетку с однородными точками,
где каждая такая точка состоит из трех
люминофорных элементов основных цветов
- зеленного, красного и синего, которые
светятся с различной интенсивностью
под воздействием лучей из электронных
пушек. Минимальное расстояние между люминофорными
элементами одинакового цвета называется
шаг точки (dot pitch) и является индексом качества
изображения. Шаг точки обычно измеряется
в миллиметрах. Чем меньше значение шага
точки, тем выше качество воспроизводимого
на мониторе изображения. Теневая маска
применяется в большинстве современных
мониторов.
Щелевая маска (Slot mask) - это технология широко применяется компанией NEC. В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий. Фактически вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов. Минимальное расстояние между двумя ячейками называется щелевым шагом (slot pitch). Чем меньше значение щелевого шага, тем выше качество изображения на мониторе. Кроме мониторов NEC, щелевая маска также используется в мониторах Panasonic.
Есть и еще один вид трубок, в которых используется "Aperture Grill" (апертурная или теневая решетка). Эти трубки стали известны под названием Trinitron и впервые были представлены на рынке компанией Sony еще в 1982 году. В трубках с апертурной решеткой применяется оригинальная технология, где имеется три лучевые пушки, три катода и три модулятора, но при этом имеется одна общая фокусировка. Это решение не включает в себя металлическую решетку с отверстиями, как в случае с теневой маской, а имеет решетку из вертикальных линий. Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов, что вместе обеспечивает высокое качество мониторов с трубками на основе этой технологии.
Минимальное расстояние между полосами люминофора одинакового цвета называется шагом полосы (strip pitch) и измеряется в миллиметрах. Чем меньше значение шага полосы, тем выше качество изображения на мониторе. Заметим, что нельзя напрямую сравнивать размер шага для трубок разных типов: шаг точек трубки с теневой маской измеряется по диагонали, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, - по горизонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой. А вот расстояние между отверстиями маски измеряется в миллиметрах. Чем меньше шаг точки, тем лучше монитор: изображения выглядят более четкими и резкими, контуры и линии получаются ровными и изящными. Стандартной для 14" монитора является величина равная 0,28 мм, встречаются также 0,26; 0,21; 0,31; 0,22 мм и др.
1.2. Жидкокристаллические мониторы
LCD (Liquid crystal display) мониторы сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств, связанных с упорядоченностью в ориентации молекул. Молекулы жидких кристаллов под воздействием электричества могут изменять свою ориентацию и вследствие этого изменять свойства светового луча проходящего сквозь них. Основываясь на этом открытии и в результате дальнейших исследований, стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в кварцевых часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD мониторы для настольных компьютеров.
Экран LCD монитора представляет собой массив маленьких сегментов (называемых пикселями), которые могут манипулироваться для отображения информации. Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD монитора, и позволяет нам отображать даже сложные изображения в цвете. Для вывода цветного изображения необходима подсветка монитора сзади так, чтобы свет порождался в задней части LCD дисплея. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные цвета. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет.
Первые LCD дисплеи были очень маленькими, около 8 дюймов, в то время как сегодня они достигли 15 и 17" размеров для использования в ноутбуках, а для настольных компьютеров производятся 19" и более LCD мониторы. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270° с помощью STN (Super twisted nematic) технологии.. Технология STN позволяет увеличить угол кручения ориентации кристаллов внутри LCD дисплея с 90° до 270°, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора.
Вкратце о разрешении
LCD мониторов. Это разрешение одно и
его еще называют native, оно соответствует
максимальному физическому
Таблица 1
Сравнение LCD и CRT мониторов
Параметры |
LCD мониторы |
CRT мониторы |
Разрешение |
Одно разрешение с фиксированным размером пикселей. Оптимально можно использовать только в этом разрешении; в зависимости от поддерживаемых функций расширения или компрессии можно использовать более высокое или более низкое разрешение, но они не оптимальны. |
Поддерживаются различные
разрешения. При всех поддерживаемых
разрешениях монитор можно |
Частота регенерации |
Оптимальная частота 60 Гц, чего достаточно для отсутствия мерцания. |
Только при частотах свыше 75 Гц отсутствует явно заметное мерцание. |
Точность отображения цвета |
Поддерживается True Color и имитируется требуемая цветовая температура. |
Поддерживается True Color и при этом на рынке имеется масса устройств калибровки цвета, что является несомненным плюсом. |
Формирование отображения |
Изображение формируется пикселями, число которых зависят только от конкретного разрешения LCD панели. Шаг пикселей зависит только от размера самих пикселей, но не от расстояния между ними. Каждый пиксель формируется индивидуально, что обеспечивает великолепную фокусировку, ясность и четкость. Изображение получается более целостным и гладким. |
Пиксели формируются группой точек или полосок. Шаг точки или линии зависит от расстояния между точками или линиями одного цвета. В результате четкость и ясность изображения сильно зависит от размера шага точки или шага линии и от качества CRT. |
Угол обзора |
В настоящее время стандартным является угол обзора 120 и выше; с дальнейшим развитием технологий следует ожидать увеличения угла обзора. |
Отличный обзор под любым углом. |
Энергопотребление и излучение |
Практически никаких опасных электромагнитных излучений нет. Уровень потребления энергии примерно на 70% ниже, чем у стандартных CRT мониторов. |
Всегда присутствует электромагнитное излучение, однако их уровень зависит от того, соответствует ли CRT какому-либо стандарту безопасности. Потребление энергии в рабочем состоянии на уровне 80 Вт. |
Интерфейс монитора |
Цифровой интерфейс, однако, большинство LCD мониторов имеют встроенный аналоговый интерфейс для подключения к наиболее распространенным аналоговым выходам видеоадаптеров. |
Аналоговый интерфейс. |
Сфера применения |
Стандартный дисплей для мобильных систем. В последнее время начинает завоевывать место и в качестве монитора для настольных компьютеров. |
Стандартный монитор для настольных компьютеров. Крайне редко используются в мобильном виде. |