Виды мониторов

Автор работы: Пользователь скрыл имя, 04 Апреля 2013 в 11:04, реферат

Описание работы

Все это привело компаний-разработчиков к усовершенствованию тех технологий в области воспроизведения информации, которые имеют место быть. Поэтому, эта проблема и стала одной из важных в компьютерной технике. В данном реферате описаны уже существующие типы мониторов, как они появились и вследствие чего, принцип работы некоторых мониторов. Также описаны появление новых технологий, которые приведут нас в мир будущего.

Содержание работы

Введение
1. Виды мониторов…………………………………….….……….
1.1. Мониторы с электронно-лучевой трубкой…….….…….…
1.2. Жидкокристаллические мониторы……….……….…….….
1.3. Плазменные мониторы………………………….…….…....
1.4. Пластиковые мониторы…………………………….………
2. Стандарты безопасности……………………………….………
2.1. Стандарт TCO……………………….……………........
2.2. Стандарт MPR II…………………..……….…………..
3. Характеристики мониторов.…………………………….……..
3.1. Типы развертки……………………………………………...
3.2. Разрешающая способность монитора………………..…….
3.3. Частота регенерации…………………………………….…..
3.4. Полоса пропускания……………………………..……..……
4. Тенденции и направления развития мониторов……………..
Заключение
Список использованных источников

Файлы: 1 файл

монитори.doc

— 111.50 Кб (Скачать файл)

 

1.3. Плазменные  мониторы

Эта технология носит название PDP (Plasma display panels) и FED (Field emission display). Такие крупнейшие производители, как Fujitsu, Matsushita, Mitsubishi, NEC, Pioneer и другие уже начали производство плазменных мониторов с диагональю 40" и более, причем некоторые модели уже готовы для массового производства. Работа плазменных мониторов очень похожа на работу неоновых ламп, которые сделаны в виде трубки, заполненной инертным газом низкого давления. Плазменные экраны создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например аргоном или неоном. Фактически, каждый пиксель на экране работает как обычная флуоресцентная лампа. Высокая яркость и контрастность наряду с отсутствие дрожания являются большими преимуществами таких мониторов. Кроме того, угол по отношению к нормали, под которым   можно увидеть нормальное изображение на плазменных мониторах существенно больше чем 45° в случае с LCD мониторами. Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора и низкая разрешающая способность, обусловленная большим размером элемента изображения. Из-за этих ограничений такие мониторы используются пока только для конференций, презентаций, информационных щитов, т.е. там, где требуются большие размеры экранов для отображения информации.

 

1.4. Пластиковые  мониторы

Есть и еще  одна новая технология, это LEP (Light emission plastics) или светящий пластик. На сегодняшний день компания может представить монохромные (желтого свечения) LEP-дисплеи, приближающиеся по эффективности к жидкокристаллическим дисплеям LCD, уступающие им по сроку службы, но имеющие ряд существенных преимуществ:

  • Поскольку многие стадии процесса производства LEP-дисплеев совпадают с аналогичными стадиями производства LCD, производство легко переоборудовать. Кроме того, технология LEP позволяет наносить пластик на гибкую подложку большой площади, что невозможно для неорганического светодиода (там приходится использовать матрицу диодов);
  • Пластик сам излучает свет и ему не нужна подсветка и прочие хитрости, необходимые для получения цветного изображения на LCD-мониторе. Больше того, LEP-монитор обеспечивает 180-градусный угол обзора;
  • Устройство дисплея предельно просто: вертикальные электроды с одной стороны пластика, горизонтальные - с другой. Изменением числа электродов на единицу протяженности по горизонтали или вертикали можно добиваться любого необходимого разрешения, а также, при необходимости, различной формы пиксела;
  • Поскольку LEP-дисплей работает при низком напряжении питания (менее 3 V) и имеет малый вес, его можно использовать в портативных устройствах, питающихся от батарей;
  • LEP-дисплей обладает крайне малым временем переключения (менее 1 микросекунды), поэтому его можно использовать для воспроизведения видеоинформации;

Эти преимущества плюс дешевизна  привели к возникновению у LEP-технологии достаточно радужных перспектив.

2. СТАНДАРТЫ БЕЗОПАСНОСТИ

На всех современных  мониторах можно встретить наклейки с аббревиатурами TCO или MPR II. Правда еще встречаются надписи Low Radiation, но на самом деле это не свидетельствует о какой-либо защите, просто так делали производители Юго-Восточной Азии для привлечения внимания к своей продукции. С целью снижения риска для здоровья, различными организациями были разработаны рекомендации по параметрам мониторов, следуя которым производители мониторов делают их более безопасными. Все стандарты безопасности для мониторов регламентируют максимально допустимые значения электрических и магнитных полей, создаваемых монитором при работе. Практически в каждой развитой стране есть собственные стандарты, но особую популярность во всем мире завоевали стандарты, разработанные в Швеции и известные под именами TCO и MPRII.

 

2.1. Стандарт TCO

Этот стандарт был  разработан в Швеции .Более 80% служащих и рабочих в Швеции имеют дело с компьютерами, поэтому главная задача TCO - это разработать стандарты безопасности при работе с компьютерами, т.е. обеспечить своим членам и всем остальным безопасное и комфортное рабочее место. Кроме разработки стандартов безопасности, TCO участвует в создании специальных инструментов для тестирования мониторов и компьютеров.

Стандарты TCO разработаны  с целью гарантировать пользователям  компьютеров безопасную работу. Этим стандартам должен соответствовать каждый монитор, продаваемый в Швеции и в Европе. Рекомендации TCO используются производителями мониторов для создания более качественных продуктов, которые менее опасны для здоровья пользователей. Суть рекомендаций TCO состоит не только в определении допустимых значений различного типа излучений, но и в определении минимально приемлемых параметров мониторов, например поддерживаемых разрешений, интенсивности свечения люминофора, запас яркости, энергопотребление, шумность и т.д. Более того, кроме требований в документах TCO приводятся подробные методики тестирования мониторов.

Рекомендации TCO применяются  как в Швеции, так и во всех Европейских странах для определения  стандартных параметров, которым  должны соответствовать все мониторы.

 

 

 

2.2. Стандарт MPR II

MPR II был разработан The swedish board for technical accreditation и определяет максимально допустимые величины излучения магнитного и электрического полей, а также методы их измерения. MPR II базируется на концепции о том, что люди живут и работают в местах, где уже есть магнитные и электрические поля, поэтому устройства, которые мы используем, такие как монитор для компьютера, не должны создавать электрические и магнитные поля, большие чем те, которые уже существуют. Заметим, что стандарты TCO требуют снижения излучений электрических и магнитных полей от устройств на столько, насколько это технически возможно, вне зависимости от электрических и магнитных полей уже существующих вокруг нас.

 

3. ХАРАКТЕРИСТИКИ МОНИТОРОВ

3.1. Типы развертки

В режимах высокого разрешения немаловажным фактором является тип развертки: построчная (Non-Interlaced) или чересстрочная. При построчном способе формирования изображения все строки кадра выводятся в течение одного периода кадровой развертки, то есть передача всех строк на экране монитора за один прием без чередования. Обладающие построчной разверткой мониторы позволяют быстрее выводить изображение на экран, и менее подвержены мерцанию. Все современные мониторы являются мониторами с построчной разверткой. При чересстрочном способе за один период кадровой развертки выводятся нечетные строки изображения, за второй – нечетные. Поэтому говорят, что один кадр делится на два поля. Заметно, что в случае чересстрочной развертки частота кадров снижается вдвое. В чем же их различие? Мониторы с построчной разверткой обладают лучшими характеристиками, так как они воспроизводят изображение на экране быстрее и без мерцания. Они также имеют более резкие и четкие изображения. Все мониторы высокого качества отображают изображения во всех режимах разрешения с построчной разверткой. Мониторы, имеющие "штатные" режимы с чересстрочной разверткой ни одной из ведущих фирм, производящих мониторы, не выпускаются.

 

3.2. Разрешающая способность  монитора

Разрешающая способность  или разрешение означает плотность отображаемого на экране изображения. Она определяется количеством точек или элементов изображения вдоль одной строки и количеством горизонтальных строк. Экран монитора c разрешением 640х480 точек имеет 640 точек вдоль строки и 480 строк, развернутых на экране. Чем выше разрешающая способность, тем больше информации выводится на экран. В настоящее время максимально возможное разрешение достигает значения 1800х1440 (Монитор ViewSonic P815). В режиме максимального разрешении монитора, как правило, работать нельзя, т.к. слишком мелкое изображение. Но максимальное разрешение является одним из важнейших параметров оценки качества монитора. Чем выше максимальное разрешение, тем лучше монитор. Оптимальное разрешение жестко связано с размерами кинескопа монитора. Рекомендованные врачами режимы сведены в табл.2.

                       

 

 

Таблица 2

                                      Рекомендованные режимы работы

Диагональ

Режим работы

14"

800x600

15"

800x600

17"

1024x728

20-21"

1280x1024


 

3.3. Частота регенерации

Это одна из важнейших  характеристик монитора, определяющая скорость, с которой происходит воспроизведение  кадра или полное восстановление (обновление) экрана в единицу времени. Частота регенерации измеряется в Hz (Герцах, Гц), где один Гц соответствует одному циклу в секунду. Частота регенерации дисплея и соответствующие характеристики графической платы, с которой работает монитор, предопределяют мерцание изображения для всех режимов работы монитора. Чем выше частота регенерации, тем меньше мерцание экрана и, как следствие, комфортнее условия работы в силу значительно меньшей утомляемости глаз пользователя. Стандарты VESA определяют сегодня частоту кадровой развертки в отсутствие мерцания изображения для любых режимов работы монитора не хуже 85 Гц. Частота строчной развертки, выражающаяся в килогерцах (кГц), равна количеству строк, которое луч может пробежать за одну секунду. Более высокая частота строчной развертки позволяет выводить на экран изображения с более высоким разрешением. Частота кадровой развертки или частота смены кадров, выраженная в герцах (Гц), соответствует частоте кадров: сколько раз луч формирует полное изображение - от самой верхней строки до самой нижней за одну секунду. Чем выше частота кадровой развертки, тем меньше уровень нежелательного мерцания изображения, на которое невольно реагируют глаза и, следовательно, меньше нагрузка на зрение. Заметим, что чем больше экран монитора, тем более заметно мерцание. Значение частоты регенерации зависит от используемого разрешения, от электрических параметров монитора и от возможностей видеоадаптера. Частоты строчной и кадровой разверток подбираются так, чтобы сформировать на экране изображение с высоким разрешением и отсутствием мерцания. Минимально допустимая частота кадровой развертки - 72 Hz. Но это минимум, при этом многие пользователи замечают мерцание экрана, особенно в помещении, освещенном люминесцентными лампами. Ниже приведена табл.3 с минимально допустимыми частотами регенерации мониторов по новому стандарту TCO’99 для разных разрешений:

                                   Таблица 3

Допустимые частоты  регенерации.                     

Диагональ монитора

Частота регенерации

Разрешение

14-15"

>= 85 Hz

>= 800x600

17"

>= 85 Hz

>= 1024x768

19-21"

>= 85 Hz

>= 1280x1024

>21"

>= 85 Hz

>= 1280x1024


 

 

3.4. Полоса пропускания

Полоса пропускания - это диапазон в частот в МГц, в  пределах которого гарантирована устойчивая работа монитора. Полоса пропускания  также может быть представлена как  быстродействие монитора, с которым  он способен воспринять графическую информацию в условиях воспроизведения изображения с максимальным разрешением, и рассчитана по формуле: W = Hmax * Vmax * Fmax, где Hmax – максимальное разрешение по вертикали, Vmax – максимальное разрешение по горизонтали, Fmax – максимальная частота кадров.

 

4. ТЕНДЕНЦИИ И НАПРАВЛЕНИЯ  РАЗВИТИЯ МОНИТОРОВ

Очевидная и  самая главная тенденция –  это увеличение доли жидкокристаллических мониторов. В 2004 году  LCD мониторы займут 52% мирового рынка, или в количественном выражении 66 миллионов штук. Другая тенденция – тенденция на рынке кинескопных мониторов. Она заключается в том, что мониторы, у которых поверхность экрана не плоская, потихоньку снижают свою долю, уступая место плоским мониторам. Доля 15-ти дюймовых мониторов останется в ближайшие нескольких лет приблизительно на одном уровне – порядка 20% от всего количества кинескопных мониторов, и если переводить в соотношение к общему рынку мониторов – порядка 1/10 его части. Компания LG Electronics, в отличие от некоторых конкурентов, будет продолжать производство и поставки 15-ти дюймовых мониторов, кроме этого даже будут вводиться новые модели.

Если говорить о LCD мониторах, то очевидная тенденция – увеличение доли 17-ти дюймовых мониторов по сравнению с 15-дюймовыми.

Что касается работы над улучшением качества изображения, здесь существует несколько направлений: во-первых, производители стараются расширить вертикальный и горизонтальный углы обзора мониторов, и можно сказать, что в этом преуспевают довольно сильно, например, у лучших  моделей LG угол обзора и по горизонтали и по вертикали достигает 176 градусов. Во-вторых – это увеличение яркости. Яркость с 250 кандел, которая сейчас является стандартом, увеличивается до 300 и даже до 350. Следующая тенденция – время отклика. Еще не так давно у большинства производителей оно составляло 50-40 миллисекунд, сейчас у большинства самых распространенных моделей - 15 и 17 дюймов - время отклика максимум 25 миллисекунд, а то бывает и 16. Если говорить о кинескопных мониторах - здесь основное стремление производителя – это увеличение яркости, использование различного рода программ, функций, которые позволяют достигать более высокую яркость по всему экрану, либо в отдельной его части. Последняя тенденция – это стремление некоторых производителей уменьшить размер кинескопного монитора в глубину.

 

ЗАКЛЮЧЕНИЕ


 

Развитие технологий в видеосистемах идет полным ходом. И какие изобретения или открытия будут сделаны в будущем, предсказать  невозможно. В настоящее время  мониторы – это одно из главных  устройств компьютера, поэтому сейчас можно сказать, что появление новых разработок в среде мониторов необходимо, так как развитие компьютерных технологий (таких как 3D-моделирование, компьютерная анимация и др.) неизбежно приводит к актуальности развития мониторов.

 

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


  1. В.Э. Фигурнов. IBM PC для пользователя. Изд. 6-е, перераб. и доп. – М.:ИНФРА – М, 1995.
  2. Айдек, Колесниченко, Крамер. Аппаратные средства PC. Изд. 2-е – М, 1998.
  3. www.ixbt.com. Компьютеры и периферия.
  4. Журнал "Мир ПК". №3 март 1999.
  5. Журнал "Мир ПК". №5 май 1999.

 

 

 

 


Информация о работе Виды мониторов