Автор работы: Пользователь скрыл имя, 15 Декабря 2013 в 13:23, курсовая работа
Целью данной курсовой работы является анализ динамики экспортно-импортных операций в регионе деятельности Таганрогской таможни. Для достижения поставленной цели необходимо последовательно решить следующие задачи:
охарактеризовать Ростовскую область как субъект РФ;
охарактеризовать исследуемый таможенный орган;
раскрыть содержание основных категорий, терминов, методов, используемых для анализа. Привести основные формулы и способы расчета необходимых для исследования статистических показателей;
ВВЕДЕНИЕ 4
1. ОБЩАЯ ХАРАКТЕРИСТИКА ЭКОНОМИЧЕСКОГО ПОТЕНЦИАЛА РОСТОВСКОЙ ОБЛАСТИ, ХАРАКТЕРИСТИКА ТАГАНРОГСКОЙ ТАМОЖНИ 6
2. СОДЕРЖАНИЕ ОСНОВНЫХ КАТЕГОРИЙ, ТЕРМИНОВ И МЕТОДОВ, ИСПОЛЬЗУЕМЫХ ДЛЯ АНАЛИЗА 12
2.1. Основные категории, термины, используемые в таможенной статистике……………………………………………………………………………….12
2.2. Статистические показатели динамики, выявление тенденций развития 14
2.3. Изучение вариации статистических данных 17
2.4. Статистические показатели динамики, выявление тенденций развития 19
3. РАСЧЕТ СТАТИСТИЧЕСКИХ ПОКАЗАТЕЛЕЙ ДИНАМИКИ ВНЕШНЕЙ ТОРГОВЛИ ТАГАНРОГСКОЙ ТАМОЖНИ 21
3.1. Анализ динамики основных показателей (стоимости и веса) экспорта, импорта и товарооборота. Расчет статистических показателей динамики 21
3.2. Анализ временных рядов, показатели динамики 27
3.3. Тренд динамики экспорта и импорта 30
3.4. Характеристика торгового баланса и отраслевой структуры 31
3.5. Анализ среднеконтрактных цен профилирующей в импорте товарной группы…………………………………………………….…………………………….35
3.6. Расчет индексных показателей товарной группы, профилирующей в экспорте…………………………………………………………………………………36
ЗАКЛЮЧЕНИЕ 38
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 40
Таможенная статистика внешней торговли призвана обеспечить полный и достоверный учет данных о внешней торговле товарами и предназначена для информационного обеспечения органов законодательной и исполнительной власти государств-членов Таможенного союза в целях решения следующих задач:
Предметом таможенной статистики являются массовые случайные явления и процессы, а в основе её методов лежит закон больших чисел, что позволяет использовать в анализе данных таможенной статистики инструментарий теории статистики, а для оценки надежности статистических оценок и выводов – аппарат математической статистики.
Основные понятия, используемые в таможенной статистике:
Статистическая совокупность — это совокупность социально-экономических объектов или явлений общественной жизни, объединенных некоей качественной основой, общей связью, но отличающихся друг от друга отдельными признаками.
Единица совокупности — это первичный элемент статистической совокупности, являющийся носителем признаков, подлежащих регистрации, и основой ведущегося при обследовании счета.
Признак — это качественная особенность единицы совокупности.
Статистический показатель - это понятие (категория), отображающее количественные характеристики (размеры) соотношения признаков общественных явлений. Статистические показатели могут быть объемными (численность населения, объем продаж, товарооборот) и расчетными (средние величины). Они могут быть плановыми, отчетными и прогностическими (т.е. выступать в качестве прогнозных оценок).
Система статистических показателей — это совокупность статистических показателей, отражающая взаимосвязи, которые объективно существуют между явлениями.
Первый этап всякого статистического исследования – это статистическое наблюдение, которое заключается в сборе первичного статистического материала, в научно организованной регистрации всех существенных фактов, относящихся к рассматриваемому объекту.
Метод группировок дает возможность все собранные в результате массового статистического наблюдения факты подвергать систематизации и классификации. Это второй этап статистического исследования. Метод обобщающих показателей позволяет характеризовать изучаемые явления и процессы при помощи статистических величин — абсолютных, относительных и средних. На этом этапе статистического исследования выявляются взаимосвязи и масштабы явлений, определяются закономерности их развития, даются прогнозные оценки. Значения показателей и признаков по всем единицам статистической совокупности как в статике, так и в динамике образую информационную базу статистики. Система методов статистического анализа образует статистическую методологию.
Для формирования таможенной статистики внешней торговли РФ используются следующие показатели: отчетный период, направление товаропотока, страна происхождения, торгующая страна, страна отправления, статистическая стоимость, код и наименование товара, вес нетто, вес брутто, количество товара в дополнительных единицах измерения, код и наименование дополнительных единиц измерения, характер сделки, таможенный режим, особенности декларирования товара, специальная таможенная процедура, регион.
Так же в таможенной статистике применяется графический метод. Графический метод представления данных позволяет не только представить статистическую информацию в обобщенном виде, но и имеет важное аналитическое значение. В статистическом графике различают следующие основные элементы: поле графика, графический образ, пространственные и масштабные ориентиры, экспликация графика.
В статистике внешней торговли для изучения динамики экспорта, импорта, товарооборота в целом применяются относительные величины динамики, которые характеризуют изменение изучаемого явления во времени, выявляют направление его развития. Входными данными для такого анализа являются статистические ряды динамики, которые состоят из двух основных элементов: показателя времени (год, месяц, неделя, квартал) и соответствующие показателю времени уровни (стоимостной объем, вес, количество ГТД, удельный вес, коэффициент и т.д.)
Одним из важнейших направлений анализа рядов динамики является изучение особенностей развития явления за отдельные периоды времени.
С этой целью для динамических рядов рассчитывают ряд показателей:
К - темпы роста;
- абсолютные приросты;
- темпы прироста.
Темп роста - относительный показатель, получающийся в результате деления двух уровней одного ряда друг на друга. Темпы роста могут рассчитываться как цепные, когда каждый уровень ряда сопоставляется с предшествующим ему уровнем: , либо как базисные, когда все уровни ряда сопоставляются с одним и тем же уровнем , выбранным за базу сравнения: . Темпы роста могут быть представлены в виде коэффициентов либо в виде процентов.
Абсолютный прирост - разность между двумя уровнями ряда динамики, имеет ту же размерность, что и уровни самого ряда динамики. Абсолютные приросты могут быть цепными и базисными, в зависимости от способа выбора базы для сравнения:
цепной абсолютный прирост - ; )
базисный абсолютный прирост
-
.
Для относительной оценки абсолютных приростов рассчитываются показатели темпов прироста.
Темп прироста - относительный показатель, показывающий на сколько процентов один уровень ряда динамики больше (или меньше) другого, принимаемого за базу для сравнения.
Базисные темпы прироста:
.
Цепные темпы
прироста:
.
и - абсолютный базисный или цепной прирост;
- уровень ряда динамики, выбранный
за базу для определения
- уровень ряда динамики, выбранный за базу для определения i-го цепного абсолютного прироста.
Существует связь между темпами роста и прироста:
К = К - 1 или К = К - 100 % (если темпы роста определены в процентах).
Уровни ряда динамики формируются под вниманием 3-х групп факторов:
1. Постоянно
действующих факторов, определяющих
основное направление, т.е.
2. Периодически действующих факторов, т.е. направленных колебаний по неделям месяца, месяцам года и т.д.
3. Разовых кратковременных факторов, которые действуют в разных, иногда в противоположных направлениях и оказывают случайное влияние на уровни данного ряда динамики.
Основной задачей статистического изучения динамики является выявление тенденции.
Основными методами
выявления тенденции рядов
Сущность метода укрупнения интервалов заключается в следующем: исходный ряд динамики преобразуется и заменяется другими состоящими из других уровней, относящихся к укрупненным периодам или моментам времени.
Метод скользящей средней, как и предыдущий предполагает преобразование исходного ряда динамики. Для выявления тенденции формируются интервал, состоящий из одинакового числа уровней. При этом каждый последующий интервал получается путем смещения на 1 уровень от начального. По образованным таким образом интервалам определяются в начале сумма, а затем средние. Технически удобнее определять скользящие средние для нечетного интервала. В этом случае рассчитанная средняя величина будет относиться к конкретному уровню ряда динамики, т.е. к середине интервала скольжения.
При определении скользящей средней по четному интервалу, расчетное значение средней величины относится к промежутку между двумя уровнями, и таким образом теряют экономический смысл. Это делает необходимыми дополнительные расчеты, связанные с центрированием по формуле арифметической простой из двух соседних не центрированных средних.
Аналитическое выравнивание – это набор уравнения прямой или кривой линии, адекватно выражающей общую тенденцию развития динамического ряда и расчет параметров этого уравнения чаще всего по методу наименьших квадратов. При выборе уравнения функции руководствуются спецификой изучаемого явления, а так же рядом формальных признаков.
В статистике под вариацией понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены влиянием различных факторов. Вариация признака бывает случайная и систематическая. Изучая силу и характер вариации, можно оценить насколько однородной является данная совокупность, а также насколько характерной является исчисленная средняя величина.
К основным показателям вариации относят следующие:
Простейшим показателем вариации является размах вариации (Rв):
где - наибольшая и наименьшая варианты.
Недостаток этого показателя заключается в том, что он зависит только от двух крайних значений признака (min, max) и не характеризует колеблимость внутри совокупности. Более устойчивым показателем вариации является среднее абсолютное линейное отклонение d.
- простая формула;
- взвешенная формула.
где: n- количество вариант,
xj – варианты,
fJ – соответствующие частоты.
Дисперсия (D) - это средняя арифметическая квадратов отклонений каждого значения признака от общей средней. В зависимости от исходных данных дисперсия может вычисляться по средней арифметической простой или взвешенной:
Среднеквадратическое отклонение представляет собой корень квадратный из дисперсии и обозначается :
Среднеквадратическое отклонение - это обобщающая характеристика абсолютных размеров вариации признака в совокупности. Выражается оно в тех же единицах измерения, что и признак (в метрах, тоннах, процентах, гектарах и т.д.). Относительным показателем вариации является коэффициент вариации:
Коэффициент вариации является также мерой устойчивости значений. Чем меньше , тем устойчивее ряд и надежнее все выводы и оценки статистического распределения. Ряд считается достаточно устойчивым, и выводы на его основе надежными, если , менее 30%, при , более 80% результаты статистического анализа, полученные на основе этого ряда, использовать некорректно. Коэффициент осцилляции (Ко) отражает относительную колеблемость крайних значений признака вокруг средней:
Информация о работе Анализ динамики экспортно - импортных операций Таганрогской таможни