Автоматизированный априорный анализ статистической совокупности в среде MS Excel

Автор работы: Пользователь скрыл имя, 29 Марта 2013 в 11:04, лабораторная работа

Описание работы

1. Выявить наличие среди исходных данных резко выделяющихся значений признаков (аномалий в данных) и исключить их из выборки.
2. Рассчитать обобщающие статистические показатели совокупности по изучаемым признакам: среднюю арифметическую ( ), моду (Мо), медиану (Ме), размах вариации (R), дисперсию( ), среднее квадратическое отклонение ( ), коэффициент вариации (Vσ).
3. На основе рассчитанных показателей в предположении, что распределения единиц по обоим признакам близки к нормальному, оценить:
а) степень колеблемости значений признаков в совокупности;
б) степень однородности совокупности по изучаемым признакам;
в) количество попаданий индивидуальных значений признаков в диапазоны ( ), ( ), ( )..
4. Сравнить распределения единиц совокупности по двум изучаемым признакам на основе анализа:
а) колеблемости признаков;
б) однородности единиц;
в) надежности (типичности) средних значений признаков.
5. Построить интервальный вариационный ряд и гистограмму распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов и установить характер (тип) этого распределения.

Файлы: 1 файл

статистика 1,2,3.doc

— 675.00 Кб (Скачать файл)

Для анализа коэффициентов а0, а1 линейного уравнения регрессии используется табл.2.7, в которой:

 – значения коэффициентов а0, а1 приведены в ячейках В91 и В92 соответственно;

 – рассчитанный уровень  значимости коэффициентов уравнения  приведен в ячейках Е91 и Е92;

 – доверительные интервалы  коэффициентов с уровнем надежности Р=0,95 и Р=0,683 указаны в диапазоне ячеек F91:I92.

5.1.1. Определение  значимости коэффициентов уравнения

Уровень значимости – это  величина α=1–Р, где Р – заданный уровень надежности (доверительная вероятность).

Режим работы инструмента Регрессия использует по умолчанию уровень надежности Р=0,95. Для этого уровня надежности уровень значимости равен α = 1 – 0,95 = 0,05. Этот уровень значимости считается заданным.

В инструменте Регрессия надстройки Пакет анализа для каждого из коэффициентов а0 и а1 вычисляется уровень его значимости αр, который указан в результативной таблице (табл.2.7 термин "Р-значение"). Если рассчитанный для коэффициентов а0, а1 уровень значимости αр, меньше заданного уровня значимости α= 0,05, то этот коэффициент признается неслучайным (т.е. типичным для генеральной совокупности), в противном случае – случайным.

Примечание. В случае, если признается случайным свободный член а0, то уравнение регрессии целесообразно построить заново без свободного члена а0. В этом случае в диалоговом окне Регрессия необходимо задать те же самые параметры за исключением лишь того, что следует активизировать флажок Константа-ноль (это означает, что модель будет строиться при условии а0=0). В лабораторной работе такой шаг не предусмотрен.

Если незначимым (случайным) является коэффициент регрессии а1, то взаимосвязь  между признаками X и Y в принципе не может аппроксимироваться  линейной моделью.

Вывод:

Для свободного члена а0 уравнения регрессии рассчитанный уровень значимости есть αр =0,12 Так как он больше заданного уровня значимости α=0,05, то коэффициент а0 признается случайным.

Для коэффициента регрессии  а1  рассчитанный  уровень  значимости есть αр =1, 09 Так как он больше заданного уровня значимости α=0,05, то коэффициент а1 признается случайным


5.1.2. Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности

Доверительные интервалы  коэффициентов а0, а1 построенного уравнения регрессии при уровнях надежности Р=0,95 и Р=0,683 представлены в табл.2.7, на основе которой формируется табл.2.9.

 

Таблица 2.9

Границы доверительных  интервалов коэффициентов уравнения

Коэффициенты

Границы доверительных интервалов

Для уровня надежности Р=0,95

Для уровня надежности Р=0,683

нижняя

верхняя

нижняя

верхняя

а0

-353,26

43,90

-253,45

-55,91

а1

0,90

1,28

0,99

1,18


Вывод:

В  генеральной  совокупности  предприятий  значение  коэффициента  а0 следует ожидать с надежностью Р=0,95 в пределах -353,26 а0 43,90

, значение коэффициента а1 в пределах 0,90 а1 1,28 Уменьшение уровня надежности ведет к сужению доверительных интервалов коэффициентов уравнения.


    • Определение практической пригодности построенной регрессионной модели.

Практическую пригодность  построенной модели можно охарактеризовать по величине линейного коэффициента корреляции r:

    • близость к единице свидетельствует о хорошей аппроксимации исходных (фактических) данных с помощью построенной линейной функции связи ;
    • близость к нулю означает, что связь между фактическими данными Х и Y нельзя аппроксимировать как построенной, так и любой другой линейной моделью, и, следовательно, <span class="dash041e_0441_043d_043e_0432_043d_043e_0439_0020_0442_0435_043a_0441_0442_0020_0441_0020_043e_0442_0441_0442_0443_043f_043e_043c_0

Информация о работе Автоматизированный априорный анализ статистической совокупности в среде MS Excel