Автор работы: Пользователь скрыл имя, 23 Января 2013 в 11:00, курсовая работа
Цель работы заключается в изучении индексного метода для статистического изучения цен.
Цель работы обусловливается следующими задачами:
1) раскрытие сущности индексного метода
2) изучение индексного метода для статистического изучения цен
3) закрепление полученных теоретических знаний путем выполнения расчетной и аналитической частей.
Агрегатная формула такого общего индекса цен имеет следующий вид:
= (1)
Расчёт агрегатного индекса цен по данной формуле предложил немецкий экономист Г. Пааше, поэтому он называется индексом Пааше.
Применяем формулу для расчёта агрегатного индекса цен по данным табл.1:
числитель индексного отношения
=25 * 9 500 + 30 * 2 500 + 10 * 1 500 = 327 500 руб.
знаменатель индексного отношения
= 20 * 9 500 + 30 * 2 500 + 15 * 1 500 = 287 500 руб.
Полученные значения подставляем в формулу 1:
= или 113,9%
Применение формулы 1 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 13,9%.
При другом
способе определения
В знаменателе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в базисном периоде по ценам того же базисного периода.
Агрегатная формула такого общего индекса имеет вид:
= (2)
Расчёт общего индекса цен по данной формуле предложил немецкий экономист Э. Ласпейрес, и получил название индекса Ласпейреса.
Применяем формулу для расчёта агрегатного индекса цен по данным табл.1:
числитель индексного отношения
= 25 * 7 500 + 30 * 2 000 + 10 * 1000 = 257 500 руб.
знаменатель индексного отношения
= 20 * 7 500 + 30 * 2 000 + 15 * 1 000 = 225 000 руб.
Полученные значения подставляем в формулу 2:
= или 114,4%
Применение формулы 2 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 14,4%.
Таким образом, выполненные по формулам 1 и 2 расчёты имеют разные показания индексов цен. Это объясняется тем, что индексы Пааше и Ласпейреса характеризуют различные качественные особенности изменения цен.
Индекс Пааше характеризует влияние изменения цен на стоимость товаров, реализованных в отчётном периоде. Индекс Ласпейреса показывает влияние изменения цен на стоимость количества товаров, реализованных в базисном периоде.
Другим важным видом общих индексов, которые широко применяются в статистике, являются агрегатные индексы физического объёма товарной массы.
При определении
агрегатного индекса
Агрегатная форма общего индекса имеет следующий вид:
= (3)
Поскольку, в числителе формулы 3 содержится сумма стоимости реализации товаров в текущем периоде по неизменным (базисным) ценам, а в знаменателе — сумма фактической стоимости товаров, реализованных в базисном периоде в тех же неизменных (базисных) ценах, то данный индекс является агрегатным индексом товарооборота в сопоставимых (базисных) ценах.
Используем формулу 3 для расчёта агрегатного индекса физического объёма реализации товаров по данным табл.1:
числитель индексного отношения
= 9 500 * 20 + 2 500 * 30 + 1 500 * 15 = 287 500 руб.
знаменатель индексного отношения
= 7 500 * 20 + 2 000 * 30 + 1 000 * 15 = 225 000 руб.
Полученные значения подставляем в формулу 3:
= или 127,8%
Применение формулы 3 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,8%.
Агрегатный индекс физического объёма товарооборота может определяться посредством использования в качестве соизмерителя индексируемых величин и цен текущего периода .
Агрегатная формула общего индекса будет иметь вид:
= (4)
числитель индексного отношения
= 9 500 * 25 + 2 500 * 30 + 1 500 * 10 = 327 500 руб.
знаменатель индексного отношения
= 7 500 * 25 + 2 000 * 30 + 1 000 * 10 = 257 500 руб.
Полученные значения подставляем в формулу 4:
= или 127,2%
Применение формулы 4 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,2%.
С помощью индексного метода в анализе решаются следующие задачи: оценка изменения уровня явления, выявления роли отдельных факторов в изменение результативного показателя, оценка влияния изменения структуры совокупности на динамику среднего уровня анализируемого показателя, пересчет показателей для сравнения и др. Особенно широкое применение эти задачи находят в факторном анализе. Логика решения большинства из пе6речисленных задач весьма очевидна. Определенную сложность представляет лишь задача оценки влияния изменения структуры совокупности на динамику среднего уровня на анализируемого показателя; поэтому рассмотрим ее подробнее.
Необходимость
решения этой задачи возникает при
анализе объемных показателей (например,
товарооборот магазина зависит от многих
факторов; один из них – структура
товарооборота, поскольку даже на интуитивном
уровне понятно, что повышение в
товарообороте доли менее издержкоемких
или более дорогих товаров
безусловно влияет на его величину)
и средних уровней
Индексный
метод основывается на относительных
показателях, выражающих отношение
уровня данного явления к уровню
его в прошлое время или
к уровню аналогичного явления, принятому
в качестве базы. Всякий индекс исчисляется
сопоставлением соизмеряемой (отчетной)
величины с базисной. Индексы, выражающие
соотношение непосредственно
Индексным методом можно выявить влияние на изучаемый совокупный показатель различных факторов. Статистика называет несколько форм индексов, которые используются в аналитической работе (агрегатная, арифметическая, гармоническая и др.).
Применяя
агрегатную форму индекса и соблюдая
установленную вычислительную процедуру,
можно решить классическую аналитическую
задачу: определение влияния на объем
произведенной или
—влияние количества;
—влияние цен.
Здесь следует напомнить, что агрегатный индекс является основной формой всякого общего индекса; его можно преобразовать как в средний арифметический, так и в средний гармонический индексы.
Динамика оборота по реализации промышленной продукции должна характеризоваться, как известно, временными рядами, построенными за ряд истекших лет с учетом изменения цен (это относится, естественно, к заготовительному, оптовому и розничному оборотам).
Индекс объема реализации (товарооборота), взятый в ценах соответствующих лет, имеет вид:
Как указывалось выше, этот индекс отражает изменение количества и цен. Поэтому обязательное условие при построении рядов динамики — выражение оборота в одинаковых ценах (в ценах базисного периода), т. е. расчет индекса физического объема товарооборота по формуле.
Такой пересчет товарооборота в сопоставимые цены по схеме агрегатного индекса может быть проведен, если товары (сырье, готовая продукция) учитываются не только по сумме, но и по количеству. Если количественный учет не ведется, то индекс физического объема определяется отношением индекса оборота в действующих ценах и индекса цен, исчисленного по схеме среднего гармонического индекса.
В статистике, планировании и анализе хозяйственной деятельности для оценки количественной роли отдельных факторов одним из основных методов является индексный метод, который представляет собой отношение фактического показателя к базовому. Как правило, в числителе и знаменателе рассчитывается сумма произведений факторов в базовом и отчетном вариантах.
Для оценки
степени влияния сдвигов в
структуре изучаемого явления (структура
товарооборота, состава работников,
закупаемого сырья, портфеля ценных
бумаг и др.). В статистике введены
понятия индексов постоянного и
переменного состава. Рассмотрим их
логику на примере с индексом цен,
который характеризует
Среднюю цену по группе товаров можно представить следующим образом:
где - цена -го товара (товарной группы);
- объем продаж -го товара (товарной группы) в натуральных единицах;
- количество товара (товарных групп).
После преобразования формулы получаем
где - доля -го товара (товарной группы) в общем товарообороте.
Из этой формулы видно, что средняя цена зависит от двух факторов (параметров): цены -го товара (товарной группы) и его доли в товарообороте (последний фактор и называют структурой товарооборота), т.е. может быть представлена функция двух параметров:
где - цена;
- структура товарооборота.
С помощью индексного метода в рамках приведенной модели можно проанализировать, в какой степени средняя цена за истекший период изменилась под влиянием (а) изменение цен на отдельные товары и (б) изменение структуры товарооборота (иначе говорят: структурных сдвигов в товарообороте).
В последующих выкладках, чтобы не загромождать формульные представления, мы будем опускать индексы суммирования и . Итак, анализируется переход в состояние средней цены в базисном и отчетном периодах; все показатели, относящиеся к базисному периоду, имеют индекс «0», к отчетному – «1».
Исходя из определения индекса цен и выполняя аналогичные выше произведенные элементарные преобразования получим:
Этот индекс называется индексом переменного состава, поскольку при его расчете меняются как цены отдельных товаров, так и структура товарооборота – это видно из приведенной формулы, в которой оба параметра имеют разные индексы. Таким образом, общее изменение средней цены за истекший период включают в себя:
- изменение
средней цены за счет
- изменение
средней цены за счет
Путем несложных преобразований формулы можно вычленить влияние каждого из приведенных факторов:
Итак, индекс
переменного состава равен
В условиях модели, связывающий товарооборот, цену и количество проданных товаров, индекс постоянного состава в отечественной статистике традиционно носит название индекса цен. [14, 114]
Изучая
зависимость объема выпуска продукции
на предприятии от изменений численности
работающих и производительности их
труда, можно воспользоваться
где - общий индекс изменения объема выпуска продукции;
- индивидуальный (факторный) индекс
изменения численности
- факторный индекс изменения производительности труда работающих;
- среднегодовая выработка
, - среднегодовая численность промышленно-производственного персонала соответственно в базисном и отчетном периодах.
Приведенные формулы показывают, что общее относительное изменение объема выпуска продукции образуется как произведение относительных изменений двух факторов: численности работающих и производительности их труда. Формулы отражают принятую в статистике практику построения факторных индексов, суть которой можно сформулировать следующим образом.
Информация о работе Индексный метод для статистического изучения цен