Автор работы: Пользователь скрыл имя, 21 Мая 2015 в 20:53, контрольная работа
1. Индексы и их применение в экономическом анализе.
2. Задача №1
Предприятие планировало увеличить выпуск продукции в 2008 г. по сравнению с 2007г. на 18%. Фактический же объем выпуска продукции составил 112,3% от выпуска 2007 г. Определите относительный показатель реализации (выполнения) плана.
1. Индексы и их применение в экономическом анализе 3
Задача №1 16
Задача №2 17
Задача №3 19
Список используемых источников 21
Содержание
1. Индексы и их применение в экономическом анализе |
3 | |
Задача №1 |
16 | |
Задача №2 |
17 | |
Задача №3 |
19 | |
Список используемых источников |
21 |
Индексы и их применение в экономическом анализе
Индекс – это относительная величина, показывающая, во сколько раз уровень изучаемого явления в данных условиях отличается от уровня того же явления в других условиях. Различие условий может проявляться во времени (тогда говорят об индексах динамики), в пространстве (территориальные индексы), в выборе в качестве базы сравнения какого-либо условного уровня, например планового показателя, уровня договорных обязательств и т.п. Соответственно вводят индекс выполнения обязательств или, если плановый уровень сравнивается с уровнем предыдущего периода, – индекс планового задания.
В экономическом анализе индексы используются не только для сопоставления уровней изучаемого явления, но главным образом для определения экономической значимости причин, объясняющих абсолютное различие сравниваемых уровней.
Общие индексы
Общие индексы рассчитывают для количественных и качественных показателей. В зависимости от цели исследования и наличия исходных данных используют различные формы построения общих индексов. Общие индексы отражают изменение всех элементов сложного явления. Под сложным явлением понимают такую статистическую совокупность, отдельные элементы которой непосредственно не подлежат суммированию. Это и есть собственно индексы (или индексы в узком смысле слова). Название индекса фиксируется подстрочным знаком - принятым обозначением индексируемого показателя. Одна из особенностей индексов состоит в том, что исследуемый показатель рассматривается не изолированно, а во взаимосвязи с другими показателями. Они имеют более сложную методику построения и расчёта. Для того чтобы построить общие индексы, необходимо соизмерить различные элементы совокупности, т. е. свести их к одному и тому же единству.
В аналитической теории индексы трактуются как показатели, необходимые для измерения влияния изменения составных частей, компонентов, факторов сложного явления на изменение уровней, компонентов, факторов сложного явления на изменение уровня этого явления. Например, изменение общей величины товарооборота в текущем периоде по сравнению с базисным связано как с изменением физического объема продаж товаров, так и с изменением цен по каждому виду товаров.
Общие индексы являются синтетическими и аналитическими показателями.
Общие индексы строят для количественных (объемных) и качественных показателей. В зависимости от цели исследования и наличия исходных данных используют различные формы построения общих индексов: агрегатную или средневзвешенную.
Агрегатные индексы
Основной формой общих индексов являются агрегатные индексы.
Агрегатный индекс - сложный относительный показатель, который характеризует среднее изменение социально-экономического явления, состоящего из несоизмеримых элементов.
Числитель и знаменатель агрегатного индекса представляют собой сумму произведений двух величин, одна из которых меняется (индексируемая величина), а другая остается неизменной в числителе и знаменателе (вес индекса).
Индексируемой величиной называется признак, изменение которого изучается (цена товаров, курс акций, затраты рабочего времени на производство продукции, количество проданных товаров и т.д.). Вес индекса - это величина, служащая для целей соизмерения индексируемых величин.
За каждым экономическим индексом стоят определенные экономические категории. Экономическое содержание индекса предопределяет методику его расчета.
Методика построения агрегатного индекса предусматривает решение трех вопросов:
) какая величина будет индексируемой;
) по какому составу разнородных элементов явления необходимо исчислить индекс;
) что будет служить весом при расчете индекса.
При выборе веса индекса принято руководствоваться следующим правилом: если строится индекс количественного показателя, то веса берутся за базисный период, при построении индекса качественного показателя используются веса отчетного периода.
Стоимость продукции - это произведение количества продукции в натуральном выражении (q) на ее цену (p).
Индекс стоимости продукции, или товарооборота ( ), представляет собой соотношение стоимости продукции текущего периода ( ) к стоимости продукции в базисном периоде ( ) и определяется по формуле:
.
Такой индекс показывает, во сколько раз возросла (уменьшилась) стоимость продукции (товарооборота) отчетного периода по сравнению с базисным, или сколько процентов составляет рост (снижение) стоимости продукции.
Аналогично строятся индексы для показателей, которые являются произведением двух сомножителей: издержек производства (произведение себестоимости продукции на количество продукции), затрат времени на производство всей продукции (произведение затрат времени на производство единицы продукции на количество выработанной продукции).
Индекс физического объема продукции - это индекс количественного показателя. В этом индексе индексируемой величиной будет количество продукции в натуральном выражении, а весом - цена. Только умножив несоизмеримые между собой количества разнородной продукции на цены, можно перейти к стоимостям продукции, которые будут уже величинами соизмеримыми. Так как индекс физического объема - индекс количественного показателя, то весами будут цены базисного периода. Тогда формула индекса примет следующий вид:
,
где в числителе дроби - условная стоимость произведенных в текущем периоде товаров в ценах базисного периода, а в знаменателе - фактическая стоимость товаров, произведенных в базисном периоде.
Индекс физического объема продукции показывает, во сколько раз возросла (уменьшилась) стоимость продукции из-за роста (снижения) объема ее производства, или сколько процентов составляет рост (снижение) стоимости продукции в результате изменения физического объема ее производства.
Средневзвешенные индексы
Помимо агрегатных индексов в статистике применяется другая форма - средневзвешенные индексы. К их исчислению прибегают тогда, когда имеющаяся в распоряжении информация не позволяет рассчитать общий агрегатный индекс. Так, если отсутствуют данные о ценах, но имеется информация о стоимости продукции в текущем периоде и известны индивидуальные индексы цен по каждому товару, то нельзя определить общий индекс цент как агрегатный, но возможно исчислить общий индекс физического объема продукции как средневзвешенную величину.
Средний индекс - это индекс, вычисленный как средняя величина из индивидуальных индексов. Агрегатный индекс является основной формой общего индекса, поэтому средний индекс должен быть тождествен агрегатному индексу. При исчислении средних индексов используются две формы средних: арифметическая и гармоническая.
Во всех случаях, когда информация о физических объемах в натуральном исчислении отсутствует, для определения изменения показателей используется средняя форма индексов. В практических расчетах используются два вида средних индексов:
• средний индекс качественного показателя,
• средний индекс физического объема.
Каждый из средних индексов может быть рассчитан по формулам средней арифметической взвешенной или средней гармонической взвешенной.
Средний индекс физического объема используется в тех случаях, когда отсутствует информация об объемах выпуска в натуральных измерителях.
Средний арифметический индекс тождествен агрегатному индексу, если весами индивидуальных индексов будут слагаемые знаменателя агрегатного индекса. Только в этом случае величина индекса, рассчитанного по формуле средней арифметической, будет равна агрегатному индексу. Средняя арифметическая форма индекса физического объема применяется, когда имеется информация о стоимости реализованной продукции в базисном периоде, и об индивидуальных индексах физического объема.
Средний арифметический индекс цен, тождественен агрегатному индексу Ласпейреса:
Весами осредняемых индивидуальных индексов в этом индексе служит объем товарооборота в базисном периоде (p0q0).
Аналогично индексу цен исчисляются и средние индексы себестоимости продукции.
Средний гармонический индекс тождествен агрегатному, если индивидуальные индексы будут взвешены с помощью слагаемых числителя агрегатного индекса. Например, индекс себестоимости можно исчислить так:
,
а средний гармонический индекс цен, который тождественен формуле Паше, так:
.
Таким образом, весами при определении среднего гармонического индекса себестоимости являются издержки производства текущего периода, а индекса цен - стоимость продукции этого периода.
Индексы с постоянными и переменными весами
При изучении динамики коммерческой деятельности приходится производить индексные сопоставления более чем за два периода.
Поэтому индексные величины могут определяться как на постоянной, так и на переменной базах сравнения. При этом, если задача анализа состоит в получении характеристик изменения изучаемого явления во всех последующих периодах по сравнению с начальным, то вычисляются базисные индексы. Например, сопоставление объёма розничного товарооборота II, III и IV кварталов с I кварталом.
Но если требуется охарактеризовать последовательно изменения изучаемого явления из периода в период, то вычисляются цепные индексы. Например, при изучении объёма розничного товарооборота по кварталам года сопоставляют товарооборот II квартала c I, III - cо II и IV - с III кварталом.
В зависимости от задачи исследования и характера исходной информации базисные и цепные индексы исчисляются как индивидуальные, так и общие.
Способы расчёта индивидуальных базисных и цепных индексов аналогичны расчёту относительных величин динамики. Общие индексы в зависимости от их вида вычисляются с переменными и постоянными весами - соизмерителями.
Используя индексный ряд за несколько периодов, можно получить динамику стоимости продукции и динамику товарооборота в неизменных ценах, т.е. в ценах какого - то одного прошлого периода. Такие индексные ряды называются индексами с постоянными весами. Для них действует правило: произведение цепных индексов даёт индекс базисный.
Цепные и базисные индексы могут быть как индивидуальные, так и общие.
Ряды индивидуальных индексов просты по построению. Так, например, обозначив четыре последовательных периода подстрочными значениями 0, 1,2, 3, исчисляем базисные и цепные индивидуальные индексы цен:
· Базисные индексы:
· Цепные индексы:
Между цепными и базисными индивидуальными индексами существует взаимосвязь, позволяющая переходить от одних индексов к другим - произведение последовательных цепных индивидуальных индексов дает базисный индекс последнего периода:
Отношение базисного индекса отчетного периода к базисному индексу предшествующего периода дает цепной индекс отчетного периода:
Это правило позволяет применять так называемый цепной метод, т.е. находить неизвестный ряд базисных индексов по известным цепным и наоборот. Рассмотрим построение базисных и цепных индексов на примере агрегатных индексов цен и физического объема продукции.
w Базисные индексы:
· Индексы цен Пааше (с переменными весами):
· Индексы цен Ласпайреса (с постоянными весами):
· Индексы физического объема продукции (с постоянными весами):
w Цепные индексы:
· Индексы цен Пааше (с переменными весами):
· Индексы цен Ласпайреса (с постоянными весами):
· Индексы физического объема продукции (с постоянными весами):
Итак, в базисных агрегатных индексах все отчетные данные сопоставляются только с базисными (закрепленными) данными, а в цепных - с предыдущими (в данном случае - смежными) данными.
Период весов во всех индексах цен Пааше взят текущий (индексы с переменными весами), в индексах физического объема и индексах цен Ласпейреса - закрепленный (индексы с постоянными весами).
Постоянные веса (не меняющиеся при переходе от одного индекса к другому) позволяют исключить влияние изменения структуры на значение индекса.
Ряды агрегатных индексов с постоянными весами имеют преимущество - сохраняется взаимосвязь между цепными и базисными индексами, например, в ряду агрегатных индексов физического объема:
Использование постоянных весов в течение ряда лет позволяет переходить от цепных общих индексов к базисным и наоборот.
Общие индексы и их применение в экономическом анализе
Если известно, что изучаемое явление неоднородно и сравнение уровней можно провести только после приведения их к общей мере, экономический анализ выполняют посредством так называемых общих индексов. Индекс становится общим, когда в расчетной формуле показывается неоднородность изучаемой совокупности. Примером неоднородной совокупности является общая масса проданных товаров всех или нескольких видов. Тогда сумму выручки можно записать в виде агрегата (суммы произведений взвешивающего показателя на объемный), например:
Информация о работе Контрольная работа по дисциплине "Статистика"