Автор работы: Пользователь скрыл имя, 08 Декабря 2013 в 11:06, контрольная работа
Система национальных счетов представляет собой систему сбора и обработки информации о состоянии и результатах функционирования национальной экономики.
Ее показатели отражают структуру рыночной экономики, институты и механизмы функционирования.
Использование СНС необходимо для проведения эффективной макроэкономической политики государства, экономического прогнозирования, для международных сопоставлений национального дохода.
Задание 1.
Основные элементы системы национальных счетов.
Система национальных счетов представляет
собой систему сбора и
Ее показатели отражают структуру рыночной экономики, институты и механизмы функционирования.
Использование СНС необходимо для
проведения эффективной макроэкономической
политики государства, экономического
прогнозирования, для международных
сопоставлений национального
Национальное счетоводство — комплексная система понятий, которые объясняют создание, распределение, перераспределение и использование валового национального продукта и национального дохода в рамках экономической системы с определенной структурой и закономерностями функционирования.
Модель национального
Национальное счетоводство выполняет для экономики в целом те же функции, что бухгалтерский учет для отдельного предприятия. Различные показатели, которые входят в систему национальных счетов, позволяют измерять объем производства в конкретный момент времени и раскрывать факторы, непосредственно определяющие функционирование экономики. Информация, которую дают счета валового внутреннего продукта и национального дохода, служит основой для формирования и проведения в жизнь государственной политики, направленной на улучшение функционирования экономики.
Система национальных счетов — статистическая система, представляющая собой формализацию теоретической концепции национального счетоводства и состоящая из логически последовательной и Интегрированной совокупности счетов, таблиц и балансовых ведомостей, которые отражают производство, распределение и использование валового национального продукта и национального дохода страны. Система национальных счетов является замкнутой системой, где все счета страны могут быть сведены в единую матрицу, отражающую все потоки (товаров, услуг, денег, финансовыхдокументов) в национальном хозяйстве.
Основные структурные элементы системы национальных счетов:
Автор Журавлева Г.П. Название Экономика Год издания 2001
Таблица 1 – Исходные данные для выполнения заданий 2-4 (по вариантам)
Варианты | |||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
12 |
10 |
12 |
12 |
12 |
6 |
8 |
7 |
12 |
12 |
10 |
11 |
11 |
13 |
8 |
7 |
9 |
9 |
15 |
13 |
11 |
12 |
12 |
9 |
9 |
8 |
10 |
10 |
14 |
9 |
10 |
14 |
11 |
8 |
10 |
7 |
11 |
5 |
12 |
5 |
9 |
6 |
10 |
9 |
11 |
8 |
12 |
8 |
15 |
8 |
8 |
7 |
7 |
8 |
10 |
8 |
13 |
9 |
10 |
7 |
8 |
8 |
8 |
9 |
11 |
7 |
14 |
10 |
11 |
9 |
9 |
9 |
9 |
9 |
11 |
7 |
10 |
11 |
10 |
10 |
13 |
13 |
10 |
8 |
10 |
8 |
11 |
9 |
12 |
7 |
7 |
7 |
9 |
8 |
6 |
7 |
13 |
10 |
14 |
5 |
8 |
8 |
10 |
7 |
9 |
6 |
12 |
8 |
15 |
10 |
5 |
5 |
9 |
8 |
8 |
9 |
9 |
9 |
14 |
6 |
8 |
9 |
9 |
7 |
9 |
10 |
10 |
8 |
13 |
9 |
9 |
7 |
9 |
9 |
9 |
8 |
9 |
10 |
12 |
13 |
10 |
8 |
8 |
6 |
7 |
9 |
12 |
10 |
11 |
5 |
8 |
8 |
12 |
9 |
10 |
11 |
13 |
9 |
10 |
10 |
9 |
10 |
11 |
9 |
7 |
12 |
14 |
8 |
11 |
11 |
7 |
11 |
10 |
9 |
12 |
10 |
14 |
10 |
14 |
8 |
7 |
13 |
11 |
8 |
10 |
9 |
12 |
10 |
13 |
14 |
9 |
13 |
11 |
7 |
11 |
8 |
14 |
9 |
12 |
13 |
10 |
14 |
10 |
10 |
10 |
7 |
12 |
7 |
12 |
7 |
10 |
12 |
12 |
11 |
9 |
9 |
10 |
8 |
13 |
14 |
11 |
10 |
13 |
12 |
9 |
8 |
11 |
10 |
14 |
10 |
12 |
11 |
9 |
11 |
8 |
7 |
12 |
9 |
14 |
10 |
10 |
8 |
10 |
13 |
11 |
9 |
12 |
6 |
10 |
8 |
11 |
7 |
9 |
10 |
12 |
8 |
8 |
5 |
13 |
10 |
13 |
8 |
10 |
6 |
6 |
9 |
14 |
11 |
12 |
11 |
13 |
10 |
13 |
10 |
9 |
8 |
9 |
6 |
13 |
10 |
12 |
7 |
9 |
14 |
9 |
10 |
8 |
7 |
11 |
6 |
13 |
14 |
13 |
11 |
7 |
11 |
14 |
11 |
15 |
12 |
Задание 2.
Сгруппировать данные из столбца в дискретный ряд. Присвоить значениям наименования. Определить признак, положенный в основу группировки. Для сгруппированного ряда найти среднюю арифметическую, моду и медиану. Рассчитать показатели вариации: размах вариации, дисперсию, среднее квадратическое отклонение, коэффициент вариации. По найденным значениям сделать выводы.
Решение:
Построим дискретный ряд, для чего проранжируем по возрастанию имеющиеся признаки. Получаем:
7, 8, 8, 9 ,9 ,9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13.
Подсчитаем число одинаковых признаков и построим таблицу.
Товары, варианты, x |
Кол-во товаров, частоты, f |
Накопленные частоты, s |
Частость, % |
7 |
1 |
1 |
3,3 |
8 |
2 |
3 |
6,7 |
9 |
8 |
11 |
26,7 |
10 |
7 |
18 |
23,3 |
11 |
5 |
23 |
16,7 |
12 |
4 |
27 |
13,3 |
13 |
3 |
30 |
10 |
Итого |
30 |
100 |
Для расчета показателей построим вспомогательную таблицу.
Товары, варианты, x |
Кол-во товаров, частоты, f |
| ||
7 |
1 |
7 |
-3,23 |
10,45 |
8 |
2 |
16 |
-2,23 |
9,98 |
9 |
8 |
72 |
-1,23 |
12,17 |
10 |
7 |
70 |
-0,23 |
0,38 |
11 |
5 |
55 |
0,77 |
2,94 |
12 |
4 |
48 |
1,77 |
12,48 |
13 |
3 |
39 |
2,77 |
22,96 |
Итого |
30 |
307 |
71,37 |
Размах вариации (R) определим по формуле:
R = хmax – хmin = 13 – 7 = 6.
Расчет средней арифметической взвешенной:
Расчет дисперсии:
Расчет среднего квадратического отклонения:
Расчет коэффициента вариации:
Мода в дискретном ряду равна признаку с максимальной частотой, в нашем случае Мо=9 при f=8. Для рассматриваемой совокупности наиболее распространенным является 9 товар.
Медиана в дискретном ряду равна среднему уровню, так как в нашем ряд четный то, медиана будет равна средней расположена между 15 и 16 признаками, которые в нашем случае равны х15=х16=10. В рассматриваемой совокупности половина признаков имеют в среднем значение не более 10, а другая половина – не менее 10.
Анализ полученных значений показателей и σ говорит о том, что средний признак составляет 10,23, отклонение от среднего в ту или иную сторону составляет в среднем 1,54 (или 15,1%).
Значение Vσ = 15,1% не превышает 33%, следовательно, вариация значений в исследуемой совокупности незначительна и совокупность по данному признаку качественно однородна. Таким образом, найденное среднее значение (10,23) является типичной, надежной характеристикой исследуемой совокупности.
Задание 3.
Сгруппировать данные из столбца в интервальный ряд. Количество интервалов принять равным 3. Для сгруппированного ряда найдите среднюю арифметическую, моду и медиану. Рассчитать показатели вариации: дисперсию способом моментов, среднее квадратическое отклонение, коэффициент вариации. По найденным значениям сделать выводы.
Решение:
При построении ряда с равными интервалами величина интервала h определяется по формуле:
Где наибольшее и наименьшее значения признака в исследуемой совокупности, k- число групп интервального ряда.
Определение величины интервала по формуле при заданных k = 3, xmax = 13, xmin = 7:
При h = 2 границы интервалов ряда распределения имеют следующий вид:
Номер группы |
Нижняя граница |
Верхняя граница |
1 |
7 |
9 |
2 |
9 |
11 |
3 |
11 |
13 |
Для построения интервального ряда необходимо подсчитать число признаков, входящих в каждую группу (частоты групп). При этом возникает вопрос, в какую группу включать единицы совокупности, у которых значения признака выступают одновременно и верхней, и нижней границами смежных интервалов. Отнесение таких единиц к одной из двух смежных групп осуществляем по принципу полуоткрытого интервала [ ). Т.к. при этом верхние границы интервалов не принадлежат данным интервалам, то соответствующие им единицы совокупности включаются не в данную группу, а в следующую. В последний интервал включаются и нижняя, и верхняя границы.
Процесс группировки единиц совокупности представлен в таблице.
№ группы |
Цена товара, руб. |
Число товаров, fj |
Накопленная частота, Sj |
Накопленная частоcть, % | |
в абсолютном выражении |
в % к итогу | ||||
1 |
2 |
3 |
4 |
5 |
6 |
1 |
7-9 |
11 |
36,7 |
11 |
36,7 |
2 |
9-11 |
12 |
40,0 |
23 |
76,7 |
3 |
11-13 |
7 |
23,3 |
30 |
100 |
Итого |
30 |
100,0 |
Конкретное значение моды для интервального ряда рассчитывается по формуле:
где хМo – нижняя граница модального интервала,
h –величина модального интервала,
fMo – частота модального интервала,
fMo-1 – частота интервала, предшествующего модальному,
fMo+1 – частота интервала, следующего за модальным.
Согласно табл. модальным интервалом построенного ряда является интервал 9-11 руб., так как его частота максимальна (f2 = 12).
Расчет моды по формуле:
руб.
Для рассматриваемой совокупности товаров наиболее распространенная цена характеризуется средней величиной 9,3 руб.
Конкретное значение медианы для интервального ряда рассчитывается по формуле:
,
где хМе– нижняя граница медианного интервала,
h – величина медианного интервала,
– сумма всех частот,
fМе – частота медианного интервала,
SMе-1 – кумулятивная (накопленная) частота интервала, предшествующего медианному.
Для расчета медианы необходимо, прежде всего, определить медианный интервал, для чего используются накопленные частоты (или частости). Так как медиана делит численность ряда пополам, она будет располагаться в том интервале, где накопленная частота впервые равна полусумме всех частот или превышает ее (т.е. все предшествующие накопленные частоты меньше этой величины).