Автор работы: Пользователь скрыл имя, 13 Мая 2015 в 10:35, контрольная работа
В современном обществе статистика стала одним из важнейших инструментов управления народным хозяйством. Она собирает информацию, характеризующую развитие экономики страны, культуры и жизненного уровня народа. С помощью статистической методологии вся полученная информация обобщается, анализируется и в результате дает возможность увидеть стройную систему взаимосвязей в экономике, яркую картину и динамику развития, позволяет делать международные сопоставления.
Современную статистическую науку невозможно представить без применения графиков
Введение
В современном обществе статистика стала
одним из важнейших инструментов управления
народным хозяйством. Она собирает информацию,
характеризующую развитие экономики страны,
культуры и жизненного уровня народа.
С помощью статистической методологии
вся полученная информация обобщается,
анализируется и в результате дает возможность
увидеть стройную систему взаимосвязей
в экономике, яркую картину и динамику
развития, позволяет делать международные
сопоставления.
Современную статистическую науку невозможно
представить без применения графиков.
Они стали средством научного обобщения.
Выразительность, доходчивость, лаконичность,
универсальность, обозримость графических
изображений сделали их незаменимыми
в исследовательской работе и в международных
сравнениях и сопоставления социально-экономических
явлений.
Значение графического метода в анализе и обобщении данных велико. Графическое изображение прежде всего позволяет осуществить контроль достоверности статистических показателей, так как, представленные на графике, они более ярко показывают имеющиеся неточности, связанные либо с наличием ошибок наблюдения, либо с сущностью изучаемого явления. С помощью графического изображения возможны изучение закономерностей развития явления, установление существующих взаимосвязей. Простое сопоставление данных не всегда дает возможность уловить наличие причинных зависимостей, в то же время их графическое изображение способствует выявлению причинных связей, в особенности в случаях установления первоначальных гипотез, подлежащих затем дальнейшей разработке. Графики также широко используются для изучения структуры влияний, их изменения во времени и размещения в пространстве. В них более выразительно проявляются сравниваемые характеристики и отчетливо видны основные тенденции развития и взаимосвязи, присущие изучаемому явлению или процессу.
По результатам 80 пусков ракет определены расстояния (в км) до точек падения. Результаты оформлены в следующуюю статистическую совокупность:
50,26 |
50,30 |
50,29 |
50,41 |
50,35 |
50,31 |
50,42 |
50,37 |
50,34 |
50,44 |
50,36 |
50,33 |
50,30 |
50,34 |
50,38 |
50,39 |
50,35 |
50,35 |
50,29 |
50,35 |
50,41 |
50,43 |
50,30 |
50,32 |
50,38 |
50,44 |
50,40 |
50,33 |
50,37 |
50,34 |
50,36 |
50,30 |
50,33 |
50,31 |
50,37 |
50,33 |
50,36 |
50,32 |
50,34 |
50,31 |
50,36 |
50,34 |
50,32 |
50,28 |
50,41 |
50,38 |
50,42 |
50,33 |
50,30 |
50,39 |
50,34 |
50,39 |
50,32 |
50,35 |
50,34 |
50,34 |
50,33 |
50,37 |
50,35 |
50,28 |
50,27 |
50,35 |
|
50,34 |
50,33 |
50,36 |
50,44 |
50,35 |
50,31 |
|
50,33 |
50,30 |
50,31 |
50,36 |
50,37 |
50,34 |
|
50,40 |
50,36 |
50,32 |
50,43 |
50,37 |
50,40 |
Результаты
Полученные в
результате n опытов наблюдаемые
значения x1, x2 xn представляют
собой выборку из всей совокупности значений,
которые может принимать интересующая
нас величина Х. Принято говорить,
что мы имеем дело с набором значений,
соответствующим некоторой выборке из
генеральной совокупности. Рассматриваемая
выборка должна обладать свойством репрезентативности
(представительности), то есть быть такой,
чтобы по ее данным можно было получить
правильное представление об всей генеральной
совокупности в целом. Будет рассматриваемая
выборка репрезентативной или нет – это
зависит от способа отбора.
При большом числе наблюдений (n ≥ 20) выборка
перестает быть удобной формой записи
– она становится слишком громоздкой
и мало наглядной. Поэтому первичные данные
(выборка) нуждаются в обработке, которая
всегда начинается с их группировки.
Построение интервального
Интервальный вариационный ряд
Номер интервала |
1 |
2 |
… |
j |
… |
(q<n) |
Границы интервала (aj-1;aj) |
(a0;a1) |
(a1;a2) |
… |
(aj-1;aj) |
… |
(aq-1;aq) |
Средняя точка интервала |
a1 |
a2 |
aj |
aq | ||
Частота интервала mj |
m1 |
m2 |
… |
mj |
… |
mq |
Относительная частота wj |
w1 |
w2 |
… |
wj |
… |
wq |
Шкала интервалов непрерывного признака A = (а0, a1, …, aj, …aq) характеризуется следующими вычисляемыми параметрами:
Наибольшему (xmax) и наименьшему (xmin) значениям признака в ранжированном "по возрастанию значения" ряде соответствуют значения первого и последнего элементов ряда "Значения признака".
Определение числа групп k=1+3,32 lg n, k= 1+3,32*lg80=7,32
Где, k- число групп;
n - численность, совокупность.
Так как число групп целое, следовательно рекомендуется построить 8 групп.
4. Определение длины интервала по формуле
Стерджеса
,
где n – объем выборки. h=0,18/8=0,0225 |
5. Определение граничных значений интервалов (аi – bi). За нижнюю границу первого интервала рекомендуется брать величину, равную
а1 = хmin – h/2.
Верхняя граница первого интервала b1 = a1 + h. Тогда, если bi – верхняя граница i-го интервала (причем аi+1 = bi), то b 2 = a2 + h, b3 = a3 + h и т.д. Построение интервалов
продолжается до тех пор, пока начало следующего
по порядку интервала не будет равно или
больше хmax.
ai |
bi | |||||||
50,248 |
50,272 | |||||||
50,272 |
50,297 | |||||||
50,297 |
50,321 | |||||||
50,321 |
50,346 | |||||||
50,346 |
50,371 | |||||||
50,371 |
50,395 | |||||||
50,395 |
50,420 | |||||||
50,420 |
50,444 | |||||||
|
||||||||
Номер интервала |
левые |
правые |
середина интервала xi |
интервальная Частота |
Интегральная часность pj | |||
1 |
50,248 |
50,272 |
50,260 |
1 |
0,01 | |||
2 |
50,272 |
50,297 |
50,285 |
4 |
0,06 | |||
3 |
50,297 |
50,321 |
50,309 |
16 |
0,27 | |||
4 |
50,321 |
50,346 |
50,334 |
18 |
0,49 | |||
5 |
50,346 |
50,371 |
50,358 |
21 |
0,76 | |||
6 |
50,371 |
50,395 |
50,383 |
6 |
0,84 | |||
7 |
50,395 |
50,420 |
50,407 |
6 |
0,91 | |||
8 |
50,420 |
50,444 |
50,432 |
7 |
1,00 | |||
Еще |
80 |
1,00 |
Далее построим гистограмму
Эмпирической функцией распределения (функцией распределения выборки) называют функцию F*(x), определяющую для каждого значения х относительную частоту события Х
F*(x)=nх/n
где nх – число вариант, меньшее х, n – объем выборки
Таким образом, для того, чтобы найти, например F*(x2), надо число вариант, меньшее x2, разделить на объем выборки n: F*(x2)=nх2/n
В отличие от эмпирической
функции распределения выборки,
интегральную функцию F(x) распределения
генеральной совокупности
1. Значения эмпирической функции принадлежат отрезку [0;1]
2. F*(x) - неубывающая функция
3. Если х1 – наименьшая варианта, то F*(x)=0 при х≤х1; если хk – наибольшая варианта, то F*(x)=1 при х>хk.
Итак, эмпирическая функция
распределения выборки служит
для оценки теоретической
Варианты xi |
50,26 |
50,28 |
50,31 |
50,33 |
50,36 |
50,38 |
50,41 |
50,44 |
Частоты ni |
1 |
4 |
16 |
18 |
21 |
6 |
6 |
7 |
Объем выборки равен 80. Наименьшая варианта равна 50,26 следовательно F*(x)=0 при x ≤50,26. Значение х1= 50,26 наблюдалось 1 раз, следовательно, F*(x)=1/80=0.0125 х2=50,28 наблюдались 1+4=5 раз, следовательно, F*(x)=5/80=0.0625 при х3=50,31 наблюдались 1+4+16=21 раз следовательно, F*(x)=21/80=0.2625 , при х4=50,33 наблюдались 1+4+16+18=39 раз следовательно, F*(x)=39/80=0.4875, при х5=50,36 наблюдались 1+4+16+18+21=60 раз следовательно, F*(x)=60/80=0. 75 , при х6=50,38 наблюдались 1+4+16+18+21+6=66 раз следовательно, F*(x)=66/80=0.825, при х7=50,41 наблюдались 1+4+16+18+21+6+7=73 раза следовательно, F*(x)=73/80=0.9125. Так как х=50,44 – наибольшая варианта, то F*(x)=1 при x>50,44.
Искомая эмпирическая функция:
График эмпирической функции
Для вычисления выборочных характеристик воспользуемся программой «Описательная статистика», выбрав соответствующий пункт меню надстройки «Анализ данных» пакета Microsoft Excel. В результате работы программы «Описательная статистика» получены значения выборочных характеристик результатов 80 пусков ракет, занесены в таблицу.
расстояния до точек падения | |
Среднее |
50,3495 |
Стандартная ошибка |
0,004689404 |
Медиана |
50,345 |
Мода |
50,34 |
Стандартное отклонение |
0,041943301 |
Дисперсия выборки |
0,001759241 |
Эксцесс |
-0,314348103 |
Асимметричность |
0,319955071 |
Интервал |
0,18 |
Минимум |
50,26 |
Максимум |
50,44 |
Сумма |
4027,96 |
Счет |
80 |
Выборочной средней называют среднее арифметическое значение признака выборочной совокупности. Если все значения признака выборки различны, то
Замечание: Если выборка представлена интервальным вариационным рядом, то за xi принимают середины частичных интервалов.
Выборочной дисперсией называют среднее арифметическое квадратов отклонения наблюдаемых значений признака от их среднего значения.
Из формулы исправленной выборочной дисперсии легко вычислить выборочную дисперсию.
С учетом поправки Шеппарда
Выборочным средним квадратическим отклонением называют квадратный корень из выборочной дисперсии: