Контрольная работа по "Статистики"

Автор работы: Пользователь скрыл имя, 13 Мая 2015 в 10:35, контрольная работа

Описание работы

В современном обществе статистика стала одним из важнейших инструментов управления народным хозяйством. Она собирает информацию, характеризующую развитие экономики страны, культуры и жизненного уровня народа. С помощью статистической методологии вся полученная информация обобщается, анализируется и в результате дает возможность увидеть стройную систему взаимосвязей в экономике, яркую картину и динамику развития, позволяет делать международные сопоставления.
Современную статистическую науку невозможно представить без применения графиков

Файлы: 1 файл

контр.docx

— 141.58 Кб (Скачать файл)

Введение

             В современном обществе статистика стала одним из важнейших инструментов управления народным хозяйством. Она собирает информацию, характеризующую развитие экономики страны, культуры и жизненного уровня народа. С помощью статистической методологии вся полученная информация обобщается, анализируется и в результате дает возможность увидеть стройную систему взаимосвязей в экономике, яркую картину и динамику развития, позволяет делать международные сопоставления.  
Современную статистическую науку невозможно представить без применения графиков. Они стали средством научного обобщения.  
Выразительность, доходчивость, лаконичность, универсальность, обозримость графических изображений сделали их незаменимыми в исследовательской работе и в международных сравнениях и сопоставления социально-экономических явлений.

Значение графического метода в анализе и обобщении данных велико. Графическое изображение прежде всего позволяет осуществить контроль достоверности статистических показателей, так как, представленные на графике, они более ярко показывают имеющиеся неточности, связанные либо с наличием ошибок наблюдения, либо с сущностью изучаемого явления. С помощью графического изображения возможны изучение закономерностей развития явления, установление существующих взаимосвязей. Простое сопоставление данных не всегда дает возможность уловить наличие причинных зависимостей, в то же время их графическое изображение способствует выявлению причинных связей, в особенности в случаях установления первоначальных гипотез, подлежащих затем дальнейшей разработке. Графики также широко используются для изучения структуры влияний, их изменения во времени и размещения в пространстве. В них более выразительно проявляются сравниваемые характеристики и отчетливо видны основные тенденции развития и взаимосвязи, присущие изучаемому явлению или процессу.

По результатам 80 пусков ракет определены расстояния (в км) до точек падения. Результаты оформлены в следующуюю статистическую совокупность:

50,26

50,30

50,29

50,41

50,35

50,31

50,42

50,37

50,34

50,44

50,36

50,33

50,30

50,34

50,38

50,39

50,35

50,35

50,29

50,35

50,41

50,43

50,30

50,32

50,38

50,44

50,40

50,33

50,37

50,34

50,36

50,30

50,33

50,31

50,37

50,33

50,36

50,32

50,34

50,31

50,36

50,34

50,32

50,28

50,41

50,38

50,42

50,33

50,30

50,39

50,34

50,39

50,32

50,35

50,34

50,34

50,33

50,37

50,35

50,28

50,27

50,35

 

50,34

50,33

50,36

50,44

50,35

50,31

 

50,33

50,30

50,31

50,36

50,37

50,34

 

50,40

50,36

50,32

50,43

50,37

50,40

 

  1. Построить по этим данным интервальный вариационный ряд случайной величины X с равными интервалами и начертить гистограмму.

 

     Результаты рассматриваемых n опытов представляют собой  последовательность x1, x2, … , xn действительных чисел, которая называется  выборкой объема n. Такова практическая трактовка выборки. Каждое xi (i=1, 2, …, n) называется вариантой (элементом выборки, наблюденным значением, значением признака).

     Полученные в результате n опытов наблюдаемые значения x1, x2 xn представляют собой выборку из всей совокупности значений, которые может принимать интересующая нас величина Х. Принято говорить, что мы имеем дело с набором значений, соответствующим некоторой выборке из генеральной совокупности. Рассматриваемая выборка должна обладать свойством репрезентативности (представительности), то есть быть такой, чтобы по ее данным можно было получить правильное представление об всей генеральной совокупности в целом. Будет рассматриваемая выборка репрезентативной или нет – это зависит от способа отбора.  
     При большом числе наблюдений (n ≥ 20) выборка перестает быть удобной формой записи – она становится слишком громоздкой и мало наглядной. Поэтому первичные данные (выборка) нуждаются в обработке, которая всегда начинается с их группировки.    

 Построение интервального вариационного  ряда распределения включает  следующие этапы: 
Интервальный вариационный ряд

Номер интервала

1

2

j

(q<n)

Границы интервала (aj-1;aj)

(a0;a1)

(a1;a2)

(aj-1;aj)

(aq-1;aq)

Средняя точка интервала

a1

a2

 

aj

 

aq

Частота интервала mj

m1

m2

mj

mq

Относительная частота wj

w1

w2

wj

wq


Шкала интервалов непрерывного признака A = (а0, a1, …, aj, …aq) характеризуется следующими вычисляемыми параметрами:

  • наибольшее (xmax) и наименьшее (xmin) значения признака;
  • оптимальное значение величины интервала h, которое позволяет выявить характерные особенности (закономерности) рассматриваемого явления при минимальном количестве интервалов q, (q<n);
  • величина a0 - начало (нижняя граница) первого интервала;
  • величина aj - конец (верхняя граница) j-го интервала, которая одновременно определяет начало (j+1)-го интервала.

Наибольшему (xmax) и наименьшему (xmin) значениям признака в ранжированном "по возрастанию значения" ряде соответствуют значения первого и последнего элементов ряда "Значения признака".

  1. Определение среди имеющихся наблюдений минимального хmin и максимального хmax значений  признака. В данном примере это будут хmin = 50,26 и хmax = 50,44 
  2. Определение размаха варьирования признака R = хmax – х min = 0,18

Определение числа групп k=1+3,32 lg n, k= 1+3,32*lg80=7,32

Где, k- число групп;

n - численность, совокупность.

Так как число групп целое, следовательно рекомендуется построить 8 групп.

4. Определение длины интервала по формуле Стерджеса 
     ,

где n – объем выборки. h=0,18/8=0,0225 
       


 

      5. Определение граничных значений интервалов (аi – bi). За нижнюю границу первого интервала рекомендуется брать величину, равную

а1 = хmin – h/2.

     Верхняя граница первого интервала b1 = a1 + h. Тогда, если bi – верхняя граница i-го интервала (причем аi+1 = bi), то b 2 = a2 + h, b3 = a3 + h и т.д. Построение интервалов продолжается до тех пор, пока начало следующего по порядку интервала не будет равно или больше хmax. 
    

 

ai

bi

 

50,248

50,272

 

50,272

50,297

 

50,297

50,321

 

50,321

50,346

 

50,346

50,371

 

50,371

50,395

 

50,395

50,420

 

50,420

50,444

 

 

 

 

 

 

 

 

 

   

Номер интервала

левые

правые

середина интервала xi

интервальная Частота

Интегральная часность pj

1

50,248

50,272

50,260

1

0,01

2

50,272

50,297

50,285

4

0,06

3

50,297

50,321

50,309

16

0,27

4

50,321

50,346

50,334

18

0,49

5

50,346

50,371

50,358

21

0,76

6

50,371

50,395

50,383

6

0,84

7

50,395

50,420

50,407

6

0,91

8

50,420

50,444

50,432

7

1,00

   

Еще

 

80

1,00


Далее построим гистограмму

 

 

  1. Найти эмпирическую функцию распределения и построить её функцию

Эмпирической функцией распределения (функцией распределения выборки) называют функцию F*(x), определяющую для каждого значения х относительную частоту события Х

F*(x)=nх/n

 где nх – число вариант, меньшее х, n – объем выборки

 

 Таким образом, для  того, чтобы найти, например F*(x2), надо число вариант, меньшее x2, разделить на объем выборки n: F*(x2)=nх2/n

 В отличие от эмпирической  функции распределения выборки, интегральную функцию F(x) распределения  генеральной совокупности называют  теоретической функцией распределения. Различие между эмпирической  и теоретической функциями состоит  в том, что теоретическая функция F(x) определяет вероятность события  Х Из определения функции F*(x) вытекают следующие ее свойства:

1. Значения эмпирической  функции принадлежат отрезку [0;1]

2. F*(x) - неубывающая функция 

3. Если х1 – наименьшая варианта, то F*(x)=0 при х≤х1; если хk – наибольшая варианта, то F*(x)=1 при х>хk.

 Итак, эмпирическая функция  распределения выборки служит  для оценки теоретической функции  распределения генеральной совокупности.

Варианты xi

50,26

50,28

50,31

50,33

50,36

50,38

50,41

50,44

Частоты ni

1

4

16

18

21

6

6

7


 

Объем выборки равен 80. Наименьшая варианта равна 50,26 следовательно F*(x)=0 при x ≤50,26. Значение х1= 50,26 наблюдалось 1 раз, следовательно, F*(x)=1/80=0.0125 х2=50,28 наблюдались 1+4=5 раз, следовательно, F*(x)=5/80=0.0625 при х3=50,31 наблюдались 1+4+16=21 раз следовательно, F*(x)=21/80=0.2625 , при х4=50,33 наблюдались 1+4+16+18=39 раз следовательно, F*(x)=39/80=0.4875,   при х5=50,36 наблюдались 1+4+16+18+21=60 раз следовательно, F*(x)=60/80=0. 75 , при х6=50,38 наблюдались 1+4+16+18+21+6=66 раз следовательно, F*(x)=66/80=0.825, при х7=50,41 наблюдались 1+4+16+18+21+6+7=73 раза следовательно, F*(x)=73/80=0.9125. Так как х=50,44 – наибольшая варианта, то F*(x)=1 при x>50,44.

 Искомая эмпирическая  функция:

 

График эмпирической функции












 

  1. Вычислить среднее арифметическое выборки, выборочную дисперсию, выборочное среднее квадратичное отклонение, коэффициент вариации, размах вариации, начальные и центральные моменты до третьего порядка включительно, величину ассиметрии и экцесс, ошибки асимметрии и экцесса.

Для вычисления выборочных характеристик воспользуемся программой «Описательная статистика», выбрав соответствующий пункт меню надстройки «Анализ данных» пакета Microsoft Excel. В результате работы программы  «Описательная статистика» получены значения выборочных характеристик результатов 80 пусков ракет, занесены в таблицу.

расстояния до точек падения

   

Среднее

50,3495

Стандартная ошибка

0,004689404

Медиана

50,345

Мода

50,34

Стандартное отклонение

0,041943301

Дисперсия выборки

0,001759241

Эксцесс

-0,314348103

Асимметричность

0,319955071

Интервал

0,18

Минимум

50,26

Максимум

50,44

Сумма

4027,96

Счет

80


 

Выборочной средней называют среднее арифметическое значение признака выборочной совокупности. Если все значения признака выборки различны, то

=50.35

Замечание: Если выборка представлена интервальным вариационным рядом, то за xi принимают середины частичных интервалов.

Выборочной дисперсией называют среднее арифметическое квадратов отклонения наблюдаемых значений признака от их среднего значения.

Из формулы исправленной выборочной дисперсии легко вычислить выборочную дисперсию.

 Следовательно,

 

С учетом поправки Шеппарда 

Выборочным средним квадратическим отклонением называют квадратный корень из выборочной дисперсии:

Информация о работе Контрольная работа по "Статистики"