Автор работы: Пользователь скрыл имя, 24 Декабря 2012 в 12:32, лабораторная работа
При проведении статистического наблюдения за деятельностью предприятий корпорации получены выборочные данные о среднегодовой стоимости основных производственных фондов и выпуске продукции за год по 32-м предприятиям, выпускающим однотипную продукцию (выборка 10%-ная, механическая).
В статистическом исследовании эти предприятия выступают как единицы выборочной совокупности. Генеральную совокупность образуют все предприятия корпорации. Анализируемые признаки предприятий – Среднегодовая стоимость основных производственных фондов и Выпуск продукции – изучаемые признаки единиц совокупности.
1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения.
Если
гистограмма имеет одновершинну
2. Для дальнейшего анализа формы распределения используются описательные параметры выборки – показатели центра распределения ( , Mo, Me) и вариации ( ). Совокупность этих показателей позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения.
Нормальное распределение является симметричным, и для него выполняются соотношения:
Нарушение этих соотношений свидетельствует о наличии асимметрии распределения. Распределения с небольшой или умеренной асимметрией в большинстве случаев относятся к нормальному типу.
3. Для анализа длины «хвостов» распределения используется правило «трех сигм». Согласно этому правилу в нормальном и близким к нему распределениях крайние значения признака (близкие к хmin и хmax) встречаются много реже (5-7 % всех случаев), чем лежащие в диапазоне ( ). Следовательно, по проценту выхода значений признака за пределы диапазона ( ) можно судить о соответствии длины «хвостов» распределения нормальному закону.
Вывод:
1. Гистограмма является одновершинной.
2. Распределение приблизительно симметрично, так как параметры , Mo, Me отличаются незначительно:
3. “Хвосты” распределения не очень длинны, т.к. согласно графе 5 табл.9 6,7% вариантов лежат за пределами интервала ( )=(821,94;1678,06) млн. руб.
Следовательно, на основании п.п. 1,2,3, можно сделать заключение о близости изучаемого распределения к нормальному.
II. Статистический анализ генеральной совокупности
Задача 1. Рассчитанные в табл.3 генеральные показатели представлены в табл.10.
Описательные статистики генеральной совокупности
Обобщающие статистические показатели совокупности по изучаемым признакам |
Признаки | |
Среднегодовая стоимость основных производственных фондов |
Выпуск продукции | |
Стандартное отклонение , млн. руб. |
217,69 |
259,68 |
Дисперсия |
47387,79 |
67434,92 |
Асимметричность As |
-0,153 |
0,043 |
Эксцесс Ek |
-0,345 |
-0,205 |
Для нормального распределения справедливо равенство
RN=6sN.
В условиях близости распределения единиц генеральной совокупности к нормальному это соотношение используется для прогнозной оценки размаха вариации признака в генеральной совокупности.
Ожидаемый размах вариации признаков RN:
- для первого признака RN =1306,14,
- для второго признака RN =1558,08.
Соотношение между генеральной и выборочной дисперсиями:
- для первого признака 1,03, т.е. расхождение между дисперсиями незначительное;
-для второго признака 1,03, т.е. расхождение между дисперсиями незначительное.
Задача 2. Применение выборочного метода наблюдения связано с измерением степени достоверности статистических характеристик генеральной совокупности, полученных по результатам выборочного наблюдения. Достоверность генеральных параметров зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности.
Как правило, статистические характеристики выборочной и генеральной совокупностей не совпадают, а отклоняются на некоторую величину ε, которую называют ошибкой выборки (ошибкой репрезентативности). Ошибка выборки – это разность между значением показателя, который был получен по выборке, и генеральным значением этого показателя. Например, разность
определяет ошибку репрезентативности для средней величины признака.
Так как ошибки выборки всегда случайны, вычисляют среднюю и предельную ошибки выборки.
1. Для среднего значения
Для изучаемых признаков средние ошибки выборки даны в табл. 3:
- для признака Среднегодовая стоимость основных производственных фондов
= 39,74,
- для признака Выпуск продукции
= 47,41.
2. Предельная ошибка выборки определяет границы, в пределах которых лежит генеральная средняя . Эти границы задают так называемый доверительный интервал генеральной средней – случайную область значений, которая с вероятностью P, близкой к 1, гарантированно содержит значение генеральной средней. Эту вероятность называют доверительной вероятностью или уровнем надежности.
Для уровней надежности P=0,954; P=0,683 оценки предельных ошибок выборки даны в табл. 3 и табл. 4.
Для генеральной средней предельные значения и доверительные интервалы определяются выражениями:
,
Предельные ошибки выборки и
ожидаемые границы для
Таблица 11
Предельные ошибки выборки и
ожидаемые границы для
Доверительная вероятность Р |
Коэффи-циент доверия t |
Предельные ошибки выборки, млн. руб. |
Ожидаемые границы для средних | ||
для первого признака |
для второго признака |
для первого признака |
для второго признака | ||
0,683 |
1 |
40,47 |
48,27 |
1209,53 |
1125,63 |
0,954 |
2 |
82,86 |
98,84 |
1167,14 |
1075,06 |
0,997 |
3 |
128,75 |
153,58 |
1121,25 |
1020,32 |
Вывод:
Увеличение уровня надежности ведет к расширению ожидаемых границ для генеральных средних.
Задача 3. Рассчитанные в табл.3 значения коэффициентов асимметрии As и эксцесса Ek даны в табл.10.
1.Показатель асимметрии As оценивает смещение ряда распределения влево или вправо по отношению к оси симметрии нормального распределения.
Если асимметрия правосторонняя (As>0) то правая часть эмпирической кривой оказывается длиннее левой, т.е. имеет место неравенство >Me>Mo, что означает преимущественное появление в распределении более высоких значений признака (среднее значение больше серединного Me и модального Mo).
Если асимметрия левосторонняя (As<0), то левая часть эмпирической кривой оказывается длиннее правой и выполняется неравенство <Me<Mo, означающее, что в распределении чаще встречаются более низкие значения признака (среднее значение меньше серединного Me и модального Mo).
Чем больше величина |As|, тем более асимметрично распределение. Оценочная шкала асимметрии:
|As| 0,25 - асимметрия незначительная;
0,25<|As| 0,5 - асимметрия заметная (умеренная);
|As|>0,5 - асимметрия существенная.
Вывод:
Для признака Среднегодовая стоимость основных производственных фондов наблюдается незначительная левосторонняя асимметрия. Следовательно, в распределении преобладают более низкие значения признака (среднее значение меньше серединного Me и модального Mo).
Для признака Выпуск продукции наблюдается незначительная правосторонняя асимметрия. Следовательно, в распределении преобладают более высокие значения признака (среднее значение больше серединного Me и модального Mo).
2.Показатель эксцесса Ek характеризует крутизну кривой распределения - ее заостренность или пологость по сравнению с нормальной кривой.
Как правило, коэффициент эксцесса вычисляется только для симметричных или близких к ним распределений.
Если Ek>0, то вершина кривой распределения располагается выше вершины нормальной кривой, а форма кривой является более островершинной, чем нормальная. Это говорит о скоплении значений признака в центральной зоне ряда распределения, т.е. о преимущественном появлении в данных значений, близких к средней величине.
Если Ek<0, то вершина кривой распределения лежит ниже вершины нормальной кривой, а форма кривой более пологая по сравнению с нормальной. Это означает, что значения признака не концентрируются в центральной части ряда, а рассеяны по всему диапазону от xmax до xmin.
Для нормального распределения Ek=0. Чем больше абсолютная величина |Ek|, тем существеннее распределение отличается от нормального.
При незначительном отклонении Ek от нуля форма кривой эмпирического распределения незначительно отличается от формы нормального распределения.
Вывод:
1. Так как для признака Среднегодовая стоимость основных производственных фондов Ek<0, то кривая распределения является более пологовершинной по сравнению с нормальной кривой. При этом Ek незначительно отличается от нуля (Ek=|0,34|) Следовательно, по данному признаку форма кривой эмпирического распределения незначительно отличается от формы нормального распределения.
2.Так как для признака Выпуск продукции Ek<0, то кривая распределения является более пологовершинной по сравнению с нормальной кривой. При этом Ek незначительно отличается от нуля (Ek=|0,21|) .Следовательно, по данному признаку форма кривой эмпирического распределения незначительно отличается от формы нормального распределения.
III. Экономическая интерпретация результатов статистического исследования предприятий
Предприятия с резко выделяющимися значениями показателей приведены в табл.2. После их исключения из выборки оставшиеся 30 предприятий являются типичными по значениям изучаемых экономических показателей.
Ответ на вопрос следует из анализа данных табл.9, где приведен диапазон значений признака ( ), содержащий наиболее характерные для предприятий значения показателей.
Для среднегодовой стоимости основных производственных фондов наиболее характерные значения данного показателя находятся в пределах от 1035,97 млн. руб. до 1464,03 млн. руб. и составляют 66,6% от численности совокупности.
Для выпуска продукции наиболее характерные значения данного показа-теля находятся в пределах от 918,58 млн. руб. до 1429,22млн. руб. и составляют 63,3% от численности совокупности.
Ответы на вопросы следуют из значения коэффициента вариации (табл.8), характеризующего степень однородности совокупности (см. вывод к задаче 3б). Максимальное расхождение в значениях показателей определяется размахом вариации Rn. (табл.8).
Для среднегодовой стоимости основных производственных фондов различия в значениях показателя незначительны. Максимальное расхождение в значениях данного показателя 900 млн. руб.
Для выпуска продукции различия в значениях показателя незначительны. Максимальное расхождение в значениях данного показателя 1080 млн. руб.
Структура предприятий представлена в табл.7 Рабочего файла.