Автор работы: Пользователь скрыл имя, 07 Января 2014 в 17:05, контрольная работа
Статистика - отрасль общественных наук, имеющая целью сбор, упорядочение, анализ и сопоставление фактов, относящихся к самым разнообразным массовым явлениям.
Статистика, как наука подразделяется на: теорию статистики, макроэкономическую статистику, экономическую статистику, отраслевую статистику.
Каждая отрасль имеет свою статистику. Статистика развивается как отдельная наука. Отраслевая статистика дополняет теорию статистики.
Министерство образования и науки Российской Федерации
Федеральное государственное
бюджетное образовательное
высшего профессионального образования
Волгоградский государственный технический университет
Кафедра «Экономика и управление»
КОНТРОЛЬНАЯ РАБОТА
По дисциплине «Статистика»
На тему: Применение метода корреляции в анализе. Коэффициенты ассоциации и контингенции, коэффициенты Пирсона и Чупрова
Вариант №16
Выполнила:
студентка группы
ЭУ-11во
Кудрина Д.Д.
№ зачетной книжки:
20132997
Проверила:
ст. преподаватель
Эрберт Э.Э.
Волгоград, 2014 г.
Введение
Статистика - отрасль общественных наук, имеющая целью сбор, упорядочение, анализ и сопоставление фактов, относящихся к самым разнообразным массовым явлениям.
Статистика, как наука подразделяется на: теорию статистики, макроэкономическую статистику, экономическую статистику, отраслевую статистику.
Каждая отрасль имеет свою статистику. Статистика развивается как отдельная наука. Отраслевая статистика дополняет теорию статистики.
Теория статистики является
основополагающей дисциплиной и
служит фундаментом для применения
статистического метода анализа
для хозяйственных субъектов. На
любом уровне и в любой сфере
эффективность использования
Статистикой называется отрасль знаний, объединяющая принципы и методы работы с числовыми данными, характеризующими массовые явления. В этом смысле статистика включает в себя несколько самостоятельных дисциплин: общую теорию статистики как вводный курс, теорию вероятностей и математическую статистику как науки об основных категориях и математических свойствах генеральной совокупности (универсума) и их выборочных оценках. Статистикой называют также отрасль практической деятельности, направленную на сбор, обработку, анализ и публикации статистических данных, отражающих явления и процессы общественной жизни. В России, как и в большинстве стран, эту работу выполняют и возглавляют специальные государственные учреждения.
Предметом статистики является
количественное измерение становления
многоукладной экономики, с целью
получения информации о качественных
показателях различных форм хозяйствования
с тем, чтобы проводить
Объект статистики - явления
и процессы социально-экономической
жизни общества, в которых отображаются
и находят свое выражение социально-
Статистика изучает
Важнейшей задачей статистики является разработка статистических данных, характеризующих состояние и развитие экономики, культуры, жизненного уровня членов общества, отдельных отраслей, предприятий и т.д.
Статистика широко используется в различных науках и теориях, таких как: актуарные расчёты, демография, психометрия, наукометрия, теория принятия решений, эконометрика, экономическая статистика, геостатистика.
Теоретическая часть
1. Применение метода корреляции в анализе
Исследуя природу, общество, экономику, необходимо считаться с взаимосвязью наблюдаемых процессов и явлений. При этом полнота описания, так или иначе, определяется количественными характеристиками причинно-следственных связей между ними. Оценка наиболее существенных из них, а также воздействия одних факторов на другие является одной из основных задач статистики.
Формы проявления взаимосвязей весьма разнообразны. В качестве двух самых общих их видов выделяют функциональную (полную) и корреляционную (неполную) связи. В первом случае величине факторного признака строго соответствует одно или несколько значений функции. Достаточно часто функциональная связь проявляется в физике, химии. В экономике примером может служить прямо пропорциональная зависимость между производительностью труда и увеличением производства продукции.
Корреляционная связь (которую
также называют неполной, или статистической)
проявляется в среднем, для массовых
наблюдений, когда заданным значениям
зависимой переменной соответствует
некоторый ряд вероятных
Например, некоторое увеличение
аргумента повлечет за собой лишь
среднее увеличение или уменьшение
(в зависимости от направленности)
функции, тогда как конкретные значения
у отдельных единиц наблюдения будут
отличаться от среднего. Такие зависимости
встречаются повсеместно. Например,
в сельском хозяйстве это может
быть связь между урожайностью и
количеством внесенных
По направлению связи бывают прямыми, когда зависимая переменная растет с увеличением факторного признака, и обратными, при которых рост последнего сопровождается уменьшением функции. Такие связи также можно назвать соответственно положительными и отрицательными.
Относительно своей
Существует еще одна достаточно важная характеристика связей с точки зрения взаимодействующих факторов. Если характеризуется связь двух признаков, то ее принято называть парной. Если изучаются более чем две переменные – множественной.
Указанные выше классификационные признаки наиболее часто встречаются в статистическом анализе. Но кроме перечисленных различают также непосредственные, косвенные и ложные связи. Собственно, суть каждой из них очевидна из названия. В первом случае факторы взаимодействуют между собой непосредственно. Для косвенной связи характерно участие какой-то третьей переменной, которая опосредует связь между изучаемыми признаками. Ложная связь – это связь, установленная формально и, как правило, подтвержденная только количественными оценками. Она не имеет под собой качественной основы или же бессмысленна.
По силе различаются слабые и сильные связи. Эта формальная характеристика выражается конкретными величинами и интерпретируется в соответствии с общепринятыми критериями силы связи для конкретных показателей.
В наиболее общем виде задача статистики в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая – регрессионный анализ. В то же время ряд исследователей объединяет эти методы в корреляционно-регрессионный анализ, что имеет под собой некоторые основания: наличие целого ряда общих вычислительных процедур, взаимодополнения при интерпретации результатов и др.
Поэтому в данном контексте
можно говорить о корреляционном
анализе в широком смысле –
когда всесторонне
Задачи собственно корреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов оказывающих наибольшее влияние на результативный признак.
Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значении зависимой переменной.
Решение названных задач опирается на соответствующие приемы, алгоритмы, показатели, применение которых дает основание говорить о статистическом изучении взаимосвязей.
Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования.
Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. На практике это положение чаще всего принимается априори. Собственно, эти методы – параметрические – их принято называть корреляционными.
Между тем в статистической практике приходится сталкиваться с задачами измерения связи между качественными признаками, к которым параметрические методы анализа в их обычном виде неприменимы. Статистической наукой разработаны методы, с помощью которых можно измерить связь между явлениями, не используя при этом количественные значения признака, а значит, и параметры распределения. Такие методы получили название непараметрических.
Если изучается взаимосвязь двух качественных признаков, то используют комбинационное распределение единиц совокупности в форме так называемых таблиц взаимной сопряженности.
Данный метод обработки
Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.
2.Коэффициенты ассоциации и контингенции
Для измерения связи между двумя дихотомическими переменными (т.е. признаками, каждый из которых принимает два значения) данные представляются в виде таблицы сопряженности 2 х 2 (ее называют также четырехпольной таблицей). Например, изучается связь между активностью работы в профсоюзе и уровнем заработной платы (таблице 1).
Таблица 1 - Активность в профсоюзе и уровень заработной платы
Проявление активности |
Уровень заработной платы |
Итого | |
высокий |
низкий | ||
Высокая |
45 (a) |
5 (b) |
50 (a+b) |
Низкая |
15 (c) |
35(d) |
50 (c+d) |
Итого |
60 (a+c) |
40 (b+d) |
100 |
В таблице 1 показано, как распределились по категориям 100 работников, по которым были получены данные о заработной плате и работе в профсоюзе. Очевидно, что эти переменные связаны: появление лиц с сочетанием высокой активности (или неактивности) в профсоюзе и высоким (низким) уровнем заработной платы не является равновероятным. Среди тех, кто активно работает в профсоюзе, вероятность встретить высокооплачиваемых работников гораздо выше, чем среди тех, кто не отличался активностью. Для таких таблиц разработаны специальные меры связей. К ним относятся коэффициент ассоциации и коэффициент контингенции.
Коэффициент ассоциации предложен английским статистиком Дж. Э. Юлом
Коэффициент ассоциации принимает значение в интервале [0,1]: 0- отсутствие связи, 1- полная связь. Вычислим значение по данным табл. 1:
т.е. связь между изучаемыми признаками очень тесная.
В случае отсутствия связи между активностью и заработной платой мы бы имели в каждой клетке табл. 1 по 25 человек, и тогда коэффициент ассоциации был бы равен: 0.
Мера связи Юла основана
на сравнении вероятности