Применение показателей вариации для изучения объекта исследования

Автор работы: Пользователь скрыл имя, 23 Марта 2015 в 20:09, курсовая работа

Описание работы

Основной целью написания курсовой работы является изучение методики статистического анализа рядов распределения. Для достижения поставленной цели были поставлены и выполнены следующие основные задачи:
Освещено понятие и виды статистических рядов распределения, и основные формы их представления.
Рассчитаны и проанализированы показатели, характеризующие центральную тенденцию, вариацию, структуру и форму ряда распределения.

Содержание работы

Введение
3
1.Характеристика вариационных рядов и их виды
5
2.Показатели вариации в анализе взаимосвязей социально-экономических явлений
8
2.1.Показатели центра распределения в статистическом анализе
8
2.2. Характеристика показателей вариации (колеблемости) признака в сравнительном анализе
10
2.3.Особенности показателей формы и кривых статистического распределения
14
3.Применение показателей вариации для изучения объекта исследования
18
Заключение
25
Список литературы

Файлы: 1 файл

показатели вариации1.docx

— 131.05 Кб (Скачать файл)

СОДЕРЖАНИЕ

 

Введение

3

1.Характеристика вариационных  рядов и их виды

5

2.Показатели вариации  в анализе взаимосвязей социально-экономических  явлений

8

2.1.Показатели центра распределения  в статистическом анализе

8

2.2. Характеристика показателей  вариации (колеблемости) признака в сравнительном анализе

10

2.3.Особенности показателей  формы и кривых статистического  распределения

14

3.Применение показателей  вариации для изучения объекта  исследования

18

Заключение

25

Список литературы

28


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

 

Статистические ряды распределения являются одним из наиболее важных элементов статистики. Они представляют собой составную часть метода статистических сводок и группировок, но, по сути, ни одно из статистических исследований невозможно произвести, не представив первоначально полученную в результате статистического наблюдения информацию в виде статистических рядов распределения.

Первичные данные обрабатываются в целях получения обобщенных характеристик изучаемого явления по роду существенных признаков для дальнейшего осуществления анализа и прогнозирования; производится сводка и группировка; статистические данные оформляются с помощью рядов распределения в таблицы, в результате чего информация представляется в наглядном рационально изложенном виде, удобном для использования и дальнейшего исследования; строятся различного рода графики для наиболее наглядного восприятия и анализ информации. На основе статистических рядов распределения вычисляются основные величины статистических исследований: индексы, коэффициенты; абсолютные, относительные, средние величины и т.д., с помощью которых можно проводить прогнозирование, как конечный итог статистических исследований.

Актуальность данной темы обусловлена тем, что статистические ряды распределения являются базисным методом для любого статистического анализа. Понимание данного метода и навыки его использования необходимы для проведения статистических исследований.

Основной целью написания курсовой работы является изучение методики статистического анализа рядов распределения. Для достижения поставленной цели были поставлены и выполнены следующие основные задачи:

  1. Освещено понятие и виды статистических рядов распределения, и основные формы их представления.
  2. Рассчитаны и проанализированы показатели, характеризующие центральную тенденцию, вариацию, структуру и форму ряда распределения.

 

 

 

 

1.ХАРАКТЕРИСТИКА ВАРИАЦИОННЫХ  РЯДОВ И ИХ ВИДЫ

 

Важнейшей частью статистического анализа является построение рядов распределения (структурной группировки) с целью выделения характерных свойств и закономерностей изучаемой совокупности. В зависимости от того, какой признак (количественный или качественный) взят за основу группировки данных, различают соответственно типы рядов распределения.

Если за основу группировки взят качественный признак, то такой ряд распределения называют атрибутивным (распределение по видам труда, по полу, по профессии, по религиозному признаку, национальной принадлежности и т.д.).

Если ряд распределения построен по количественному признаку, то такой ряд называют вариационным. Построить вариационный ряд - значит упорядочить количественное распределение единиц совокупности по значениям признака, а затем подсчитать числа единиц совокупности с этими значениями (построить групповую таблицу).

Выделяют три формы вариационного ряда: ранжированный ряд, дискретный ряд и интервальный ряд.

Ранжированный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.

Другие формы вариационного ряда - групповые таблицы, составленные по характеру вариации значений изучаемого признака. По характеру вариации различают дискретные (прерывные) и непрерывные признаки.

Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести тарифный разряд, количество детей в семье, число работников на предприятии и т.д. Эти признаки могут принимать только конечное число определенных значений.

Дискретный вариационный ряд представляет таблицу, которая состоит из двух граф. В первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака.

Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака нужно строить интервальный вариационный ряд.

Групповая таблица здесь также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота).

Частота (частота повторения) - число повторений отдельного варианта значений признака, обозначается fi , а сумма частот, равная объему исследуемой совокупности, обозначается

 

                                                                                                         (1.1)

где k - число вариантов значений признака

Очень часто таблица дополняется графой, в которой подсчитываются накопленные частоты S, которые показывают, какое количество единиц совокупности имеет значение признака не большее, чем данное значение.

Частоты ряда f могут заменяться частостями w, выраженными в относительных числах (долях или процентах). Они представляют собой отношения частот каждого интервала к их общей сумме, т.е.:

                                                                            (1.2)

 

При построении вариационного ряда с интервальными значениями прежде всего необходимо установить величину интервала i, которая определяется как отношение размаха вариации R к числу групп m:

                                                                                                        (1.3)

где R = xmax - xmin ;

m = 1 + 3,322 lgn (формула Стерджесса);

n - общее число единиц  совокупности.

 

 

 

 

 

2.ПОКАЗАТЕЛИ ВАРИАЦИИ  В АНАЛИЗЕ ВЗАИМОСВЯЗЕЙ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ  ЯВЛЕНИЙ

 

2.1.Показатели центра распределения  в статистическом анализе

 

Статистический анализ вариационных рядов распределения предполагает расчет характеристик центра распределения, его структуры, оценку степени вариации и дифференциации изучаемого признака, изучение формы распределения.

В качестве показателей центральной тенденции распределения используются: среднее арифметическое значение, мода и медиана.

Средней арифметической величиной называется такое значение признака в расчете на единицу совокупности, при вычислении которого общий объем признака в совокупности сохраняется неизменным.

Иными словами, средняя арифметическая величина — среднее слагаемое. При ее вычислении общий объем признака мысленно распределяется поровну между всеми единицами совокупности.

Средняя арифметическая определяется по формулам:

  1. Средней арифметической простой (для несгруппированных данных):

 

,                                                                       (2.1)

где: – значение признака у i-й единицы совокупности;

n – объем совокупности.

  1. Средней арифметической взвешенной (для интервального вариационного ряда):

 

,                                                                      (2.2)

где:fi – абсолютные частоты;

xi – середина интервала.

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменным произведение индивидуальных величин, то следует применить геометрическую среднюю величину. Ее формула такова:

         (2.3)

При изучении вариации применяются такие характеристики вариационного ряда, которые описывают количественно его структуру, строение. Такова, например, медиана – величина варьирующего признака, делящая совокупность на две равные части – со значениями признака меньше медианы и со значениями признака больше медианы.

В интервальном вариационном ряду для нахождения медианы применяется формула:

,                                           (2.4)

где: Ме – медиана;

 Хе – нижняя граница интервала, в котором находится медиана; n – число наблюдений;

 fMe-1 – накопленная частота в интервале, предшествующем медианному;

fMe – частота в медианном интервале;

i – величина интервала.

Важное значение имеет такая величина признака, которая встречается в изучаемом ряду, в совокупности чаще всего. Такую величину принято называть модой и обозначать Мо. В дискретном ряду мода определяется без вычисления как значение признака с наибольшей частотой.

В интервальном вариационном ряду, тем более при непрерывной вариации признака, строго говоря, каждое значение признака встречается только один раз. Модальным интервалом является интервал с наибольшей частотой. Значение моды в интервальном ряду распределения определяется по следующей формуле:

,                      (2.5)

где:Х0 – нижняя частота модального интервала;

 fMo – частота в модальном интервале;

 fMo-1 – частота в предыдущем интервале;

fMo+1 – частота в следующем интервале за модальным;

 i – величина интервала.

 

2.2. Характеристика показателей  вариации (колеблемости) признака в сравнительном анализе

 

Информация о средних уровнях исследуемых показателей обычно бывает недостаточной для глубокого анализа изучаемого процесса или явления. Необходимо учитывать и разброс или вариацию значений отдельных единиц, которая является важной характеристикой изучаемой совокупности. В наибольшей степени вариации подвержены курсы акций, объемы спроса и предложения, процентные ставки в разные периоды и в разных местах.

Для измерения вариации признака используют как абсолютные, так и относительные показатели.

К абсолютным показателям вариации относят: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсию.

К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение и др.

Размах вариации R. Это самый доступный по простоте расчета абсолютный показатель, который определяется как разность между самым большим и самым малым значениями признака у единиц данной совокупности:

          (2.6)

Размах вариации (размах колебаний) - важный показатель колеблемости признака, но он дает возможность увидеть только крайние отклонения, что ограничивает область его применения. Для более точной характеристики вариации признака на основе учета его колеблемости используются другие показатели.

Среднее линейное отклонение d, которое вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности. Эта величина определяется как средняя арифметическая из абсолютных значений отклонений от средней. Так как сумма отклонений значений признака от средней величины равна нулю, то все отклонения берутся по модулю.

Формула среднего линейного отклонения (простая)

                                                          (2.7)

Формула среднего линейного отклонения (взвешенная)

                                                              (2.8)

При использовании показателя среднего линейного отклонения возникают определенные неудобства, связанные с тем, что приходится иметь дело не только с положительными, но и с отрицательными величинами, что побудило искать другие способы оценки вариации, чтобы иметь дело только с положительными величинами. Таким способом стало возведение всех отклонений во вторую степень. Обобщающие показатели, найденные с использованием вторых степеней отклонений, получили очень широкое распространение. К таким показателям относятся среднее квадратическое отклонение  и среднее квадратическое отклонение в квадрате , которое называют дисперсией.

Информация о работе Применение показателей вариации для изучения объекта исследования