Шпаргалка по "Статистике"

Автор работы: Пользователь скрыл имя, 02 Января 2014 в 17:03, шпаргалка

Описание работы

1. Предмет, метод и задачи статистики.
Статистика это сложная и многогранна наука, в курсе которой излагаются основные категории и принципы статистической науки, научные основы методов анализа статистических данных. Статистика учит, как нужно собирать, сводить и анализировать статистические материалы. Статистика это сбор массовых первичных данных, их обработка и анализ. Статистика изучает с количественной стороны качественное содержание массовых общественных явлений и процессов. Она исследует количественное выражение массовых закономерностей общественного развития в конкретных условиях места и времени. Следовательно, статистика изучает количественные характеристики процессов и явлений общественного развития.

Файлы: 1 файл

Шпаргалка Статистика.doc

— 500.50 Кб (Скачать файл)

 

 

 

20. Методы  выявления сезонных колебаний.  Индексы сезонности. Их применение  в анализе и прогнозировании  экономических процессов.

При сравнении квартальных  и месячных данных многих социально-экономических явлений часто обнаруживаются периодические колебания, возникающие под влиянием природно-климатических условий, общих экономических факторов, а также многочисленных и разнообразных факторов, которые часто являются регулируемыми. В широком понимании к сезонным колебаниям относят все явления, которые обнаруживают в своем развитии отчетливо выраженную закономерность внутригодовых изменений, т.е. более или менее устойчиво повторяющиеся из года в год колебания уровня. Периодические колебания, которые имеют определенный и постоянный период, равный годовому промежутку, носят название сезонные колебания или сезонные волны, а динамический ряд в этом случае называют сезонным рядом динамики. Характеризуют сезонные колебания показателями, которые называются индексами сезонности. Индексами сезонности являются процентные отношения фактических (эмпирических) внутригрупповых уровней к теоретическим (расчетным) уровням, выступающим в качестве базы сравнения. Совокупность индексов сезонности образует  сезонную волну. Для того, чтобы выявить устойчивую сезонную волну, на которой не отражались бы случайные условия одного года, индексы сезонности вычисляют по данным за несколько лет (не менее трех), распределенным по месяцам. Для каждого месяца рассчитывается средняя величина уровня , затем вычисляется среднемесячный уровень для всего ряда . После чего определяется показатель сезонности волны – индекс сезонности Is как процентное отношение средних для каждого месяца к общему среднемесячному уровню ряда, %: . Для наглядного представления сезонной волны индексы сезонности изображают в виде графика. Когда уровень проявляет тенденцию к росту или снижению, то отклонения от постоянного среднего уровня могут исказить сезонные колебания. В таких случаях фактические данные сопоставляют с выравненными, т.е. полученными аналитическим выравниванием.

21. Понятие  об экономических индексах, сфера  их применения. Классификация индексов. Индивидуальные индексы, их взаимосвязи.

.Индексом в  статистике называют относительный показатель, характеризующий изменение величины какого-либо явления (простого или сложного, состоящего из соизмеримых или несоизмеримых элементов) во времени, пространстве или по сравнению с любым эталоном.  Основным элементом индексного отношения является индексируемая величина. Индексируемая величина – значение признака статистической совокупности, изменение которой является объектом изучения. Индексы классифицируются по трем признакам: по содержанию изучаемых объектов; степени охвата элементов совокупности; методам расчета общих индексов. По содержанию изучаемых величин индексы разделяют на индексы количественных и индексы качественных показателей. Индексы количественных показателей – индексы физического объема промышленной и сельскохозяйственной продукции, физического объема розничного товарооборота и т.д. Все индексируемые показатели этих индексов являются объемными, поскольку они характеризуют общий, суммарный размер (объем) того или иного явления и выражаются абсолютными величинами. При расчете таких индексов количества оцениваются в одинаковых, сопоставимых ценах. Индексы качественных показателей – индексы курса валют, цен, себестоимости, производительности труда, заработной платы и т.д. Индексируемые показатели этих индексов характеризуют уровень явления в расчете на ту или иную единицу совокупности. Такие показатели называются качественными. Они измеряют не объем, а интенсивность, эффективность явления или процесса. Как правило, они являются либо средними, либо относительными величинами. Расчет таких индексов производится на базе одинаковых, неизменных количеств продукции. По степени охвата единиц совокупности индексы делятся на два класса: индивидуальные и общие. Индивидуальные индексы служат для характеристики изменения отдельных элементов сложного явления. Общий индекс отражает изменение всех элементов сложного явления. При этом под сложным явлением понимают такую статистическую совокупность, отдельные элементы которой непосредственно не подлежат суммированию. Если индексы охватывают не все элементы сложного явления, а лишь часть, то их называют групповыми или субиндексами. По методам расчета различают индексы агрегатные и средние, исчисление которых и составляет особый прием исследования, именуемый индексным методом. Индивидуальные индексы обозначаются буквой i и снабжаются подстрочным знаком индексируемого показателя: iq – индивидуальный индекс объема продукции и т.д. Общий индекс обозначается буквой J и также сопровождается подстрочным знаком индексируемого показателя: Jp – общий индекс цен и т.д. Расчет индивидуальных индексов прост, их определяют вычислением отношения двух индексируемых величин: индивидуальный индекс физического объема продукции iq рассчитывается по формуле: , где q1, q0 – количество (объем) произведенного товара в текущем (отчетном) и базисном периодах соответственно; индивидуальный индекс цен iр: , где р1, р0 – цена единицы одноименной продукции в отчетном и базисном периодах соответственно. Любые общие индексы могут быть построены двумя способами: как агрегатные и как средние из индивидуальных. Последние в свою очередь делятся на средние арифметические и средние гармонические. Агрегатные индексы качественных показателей могут быть рассчитаны как индексы переменного состава и индексы постоянного (фиксированного) состава. Общие индексы дают обобщающую цифровую характеристику, и при помощи общих индексов обобщаются элементы совокупности с непосредственно несоизмеримыми величинами. При построении общих индексов возникают следующие проблемы: 1. необходимо выбрать элементы, которые следует объединить в одном индексе; 2. правильно выбрать соизмеритель или вес, т.е. постоянный признак. Выбор веса зависит от того, какой индексируется признак – количественный или качественный. Основной формой общих индексов является агрегатная форма. Индекс агрегатной формы строится по методу сумм. Агрегатная форма применяется, если мы имеем данные поэлементные в отчетном и базисном периоде. Индекс товарооборота: ; индекс физического объема продукции: ;

22. Агрегатный  индекс как форма общего индекса.  Выбор весов при построении  общих индексов. Индексы цен Г.  Паше и Э. Ласпейреса, их практическое применение.

Индексы цен  Пааше и Ласпейреса, их практическое применение. Индекс потребительских  цен является общим измерителем инфляции, используется при корректировке законодательно устанавливаемого минимального размера оплаты труда, установлении ставок налогов и т.д. Поскольку этот индекс характеризует изменение цен, индексируемой величиной в нем будет цена товара. При построении индекса цен в качестве весов индекса обычно берут количество товаров, проданных в текущем (отчетном) периоде. Агрегатный индекс цен с отчетными весами впервые предложен Пааше и носит его имя: формула агрегатного индекса цен Пааше , где - фактическая стоимость продукции (товарооборот) отчетного периода; - условная стоимость товаров, реализованных в отчетном периоде по базисным ценам. Индекс цен Пааше показывает, во сколько раз возрос (уменьшился) в среднем уровень цен на массу товара, реализованную в отчетном периоде, или сколько процентов составляет его рост (снижение) в отчетном периоде по сравнению с базисным периодом. Если из значения индекса цен Ip вычесть 100%, то разность покажет на сколько процентов в среднем возрос (уменьшился) за этот период уровень цен на сумму товаров, реализованную в отчетном периоде. При таком методе, рассчитав индекс цен , можно подсчитать экономический эффект от изменения цен.

Если индекс цен рассчитывается по продукции базисного периода, для расчета используют формулу агрегатного индекса цен Ласпейреса: . Эти два агрегатных индекса цен (Пааше и Ласпейреса) не идентичны. Значения индексов цен Пааше и Ласпейреса для одних и тех же данных не совпадают, т.к. имеют различное экономическое содержание. Индекс Пааше характеризует изменение цен отчетного периоде по сравнению с базисным по товарам, реализованным в отчетном периоде, и фактическую экономию (перерасход) от изменения цен, т.е. индекс цен Пааше показывает, на сколько товары в отчетном периоде стали дороже (дешевле), чем в базисном. Экономическое содержание индекса Ласпейреса другое: он показывает, на сколько изменились цены в отчетном периоде по сравнению с базисным, но по той продукции, которая была реализована в базисном периоде, и экономию (перерасход), которую можно было бы получить от изменения цен, т.е. условную экономию (перерасход). Иначе говоря, индекс цен Ласпейреса показывает, во сколько раз товары базисного периода подорожали (подешевели) из-за изменения цен на них в отчетном периоде. Поэтому применение формулы Ласпейреса ограничено особыми условиями исследования.

В тех случаях, когда  неизвестны значения p0 и q1 , но дано произведение p1q1 (товарооборот текущего периода) и индивидуальные индексы цен , а сводный индекс должен быть исчислен с отчетными весами, - применяется средний гармонический индекс цен. Причем индивидуальные индексы должны быть взвешены таким образом, чтобы средний гармонический индекс совпал с агрегатным. Из формулы определяется неизвестное значение цены , подставляется в знаменатель агрегатной формулы и получается средний гармонический индекс цен, тождественный формуле Пааше: . Весами индивидуальных индексов в этом индексе служат стоимость отдельных видов продукции отчетного периода в ценах того же периода p1q1. Если из индивидуального индекса цен выразить цену отчетного периода р10ip и подставить ее в числитель агрегатного индекса цен Ласпейреса, то получится средний арифметический индекс цен, тождественный формуле Ласпейреса: . Весами осредняемых индивидуальных индексов в этом случае служит объем товарооборота в базисном периоде p0q0.

23. Преобразование  агрегатных индексов в средние.  Средние арифметический и гармонический индексы. Их применение в изучении динамики цен и физического объёма производства.

. Помимо агрегатного способа расчета общих индексов существует и другой способ, который состоит в расчете общих индексов как средних из соответствующих индивидуальных индексов. К исчислению таких средневзвешенных индексов прибегают тогда, когда имеющаяся в распоряжении информация не позволяет рассчитать агрегатный индекс. Так, если неизвестны количества произведенных отдельных продуктов в натуральных измерителях, но известны индивидуальные индексы и стоимость продукции базисного периода (p0q0), можно определить средний арифметический индекс физического объема продукции. Исходной базой построения служит агрегатная форма: . Из имеющихся данных можно получить только знаменатель этой формулы. Для нахождения числителя используется формула индивидуального индекса объема продукции, из которой следует, что q1=q0iq. Подставляя данное выражение в числитель агрегатной формы, получаем общий индекс физического объема в форме среднего арифметического индекса физического объема продукции, где весами служит стоимость отдельных видов продукции в базисном периоде (q0p0): . Если известные данные позволяют вычислить только числитель агрегатного индекса физического объема, то, аналогично выражая продукцию базисного периода как , производим замену в знаменателе. В результате получаем общий индекс физического объема в форме среднего гармонического взвешенного индекса физического объема продукции, где весами служит стоимость продукции отчетного периода в базисных ценах (q1p0): . В форме средней гармонической взвешенной индекс физического объема используется только в аналитических целях. Т.о., применение той или иной формулы индекса физического объема (агрегатного или среднего арифметического или среднего гармонического) зависит от имеющихся в нашем распоряжении конкретных данных и цели исследования.

 

24. Индексы  средних уровней качественных  показателей. Индексы переменного, постоянного состава и структурных сдвигов. Определение абсолютных приростов (снижения) средних уровней за счёт отдельных факторов.

На динамику качественных показателей, уровни которых выражены средними величинами, оказывает влияние изменение структуры изучаемого явления. Под изменением структуры явления понимается изменение доли отдельных единиц совокупности, из которых формируются средние, в общей их численности. При изучении динамики средней величины задача состоит в определении степени влияния двух факторов: изменений значения осредняемого показателя и изменений структуры явления. Эта задача решается с помощью индексного метода, т.е. путем построения системы взаимосвязанных индексов, в которую включаются три индекса: переменного состава, постоянного состава и структурных сдвигов.Индекс переменного состава представляет собой отношение двух взвешенных средних с изменяющимися (переменными) весами, показывающее изменение индексируемой средней величины. Для любых качественных показателей индекс переменного состава можно записать в общем виде: , где х1, х2 – уровни осредняемого показателя в отчетном и базисном периодах соответственно; f1, f2 – веса (частоты) осредняемого показателя в отчетном и базисном периодах соответственно. Чтобы элимитировать влияние изменения структуры совокупности на динамику средней величины, берут отношение средних взвешенных с одними и теми же весами (как правило на уровне отчетного периода). Индекс, характеризующий динамику средней величины при одной и той же фиксированной структуре совокупности, носит название индекса постоянного (фиксированного) состава и исчисляется в общем виде: . Индекс постоянного состава показывает, как в отчетном периоде по сравнению с базисным изменилась средняя величина показателя по какой-либо однородной совокупности за счет изменения только самой индексируемой величины, т.е. когда влияние структурного фактора устранено. Для измерения влияния только структурных изменений на исследуемый средний показатель исчисляют индекс структурных сдвигов, как отношение среднего уровня индексируемого показателя базисного периода, рассчитанного на отчетную структуру, к фактической средней этого показателя в базисном периоде: .

 

25. Индексный  метод в исследовании изменения  сложного экономического явления  за счёт отдельных факторов. Взаимосвязь  индексов.

Многие статистические показатели, характеризующие различные  стороны общественных явлений, находятся  между собой в определенной связи (часто в виде произведения). Форма взаимосвязи между такими показателями выявляется на основе теоретического анализа. Статистика характеризует эти взаимосвязи количественно. Связь между экономическими показателями находит отражение и во взаимосвязи характеризующих их индексов, поэтому многие экономические показатели тесно связаны между собой и образуют индексные системы. Принята следующая практика факторного анализа: если результативный показатель можно представить как произведение объемного и качественного факторов, то, определяя влияние объемного фактора на изменение результативного показателя, качественный фактор фиксируется на уровне базисного периода; если же определяется влияние качественного показателя, то объемный фактор фиксируется на уровне отчетного периода.Рассмотрим построение взаимосвязанных индексов на примере индексов цен, физического объема продукции (если речь идет об отпускных ценах) или физического объема товарооборота (если речь идет о розничных ценах) и индекса стоимости продукции (товарооборота в фактических ценах). Индексы физического объема и цен являются факторными по отношению к индексу стоимости продукции (товарооборота в фактических ценах): , или . Таким образом, произведение индекса цен на индекс физического объема продукции дает индекс стоимости продукции (товарооборота в фактических ценах), т.е. образует индексную систему из этих трех индексов. Аналогичную взаимосвязь между индексом затрат на производство продукции, индексом себестоимости и индексом физического объема продукции можно записать в виде следующей системы индексов: , или . Индекс изменение общего фонда оплаты труда F в связи с изменением общей численности работающих Т и заработной платы  х: , или .К числу взаимосвязанных индексов относятся и индексы переменного состава, постоянного состава и индексы структурных сдвигов. В этой системе динамика среднего показателя (индекса переменного состава) выступает как произведение двух индексов: индекса постоянного состава и индекса структурных сдвигов: ; . Индексная система позволяет определить влияние отдельных факторов на формирование уровня результативного показателя, по двум известным значениям индексов найти значение третьего неизвестного.


Информация о работе Шпаргалка по "Статистике"