Автор работы: Пользователь скрыл имя, 13 Октября 2012 в 16:19, доклад
Ряды динамики — это ряды статистических показателей, характеризующих развитие явлений природы и общества во времени. Ряды динамики позволяют выявить закономерности развития изучаемых явлений.
Виды рядов динамики. Методы расчета среднего уровня в рядах динамики
Ряды динамики — это ряды статистических показателей, характеризующих развитие явлений природы и общества во времени. Ряды динамики позволяют выявить закономерности развития изучаемых явлений.
Ряды динамики содержат два вида показателей. Показатели времени (годы, кварталы, месяцы и др.) или моменты времени (на начало года, на начало каждого месяца и т.п.). Показатели уровней ряда. Показатели уровней рядов динамики могут быть выражены абсолютными величинами (производство продукта в тоннах или рублях), относительными величинами (удельный вес городского населения в %) и средними величинами (средняя заработная плата работников отрасли по годам и т. п.). В табличной форме ряд динамики содержит два столбца или две строки.
Правильное построение рядов динамики предполагает выполнение ряда требований:
Статистические показатели могут характеризовать либо результаты изучаемого процесса за период времени, либо состояние изучаемого явления на определенный момент времени, т.е. показатели могут быть интервальными ( периодическими ) и моментными. Соответственно первоначально ряды динамики могут быть либо интервальными, либо моментными. Моментные ряды динамики в свою очередь могут быть с равными и неравными промежутками времени.
Первоначальные ряды динамики
могут быть преобразованы в ряд
средних величин и ряд
Методика расчета среднего уровня в рядах динамики различна, обусловлена видом ряда динамики. На примерах рассмотрим виды рядов динамики и формулы для расчета среднего уровня.
Интервальные ряды динамики.
Уровни интервального
ряда характеризуют результат
Средний уровень в интервальных рядах динамики ( ) исчисляется по формуле средней арифметической простой:
Рассмотрим методику расчета среднего уровня интервального ряда динамики на примере данных о продаже сахара.
Годы |
Продано сахара, тыс. тонн |
1994 |
2905 |
1995 |
2585 |
1996 |
2647 |
- это среднегодовой объем реализации сахара населению за 1994-1996 гг. Всего за три года было продано 8137 тыс.тонн сахара.
Моментные ряды динамики
Уровни моментных рядов динамики характеризуют состояние изучаемого явления на определенные моменты времени. Каждый последующий уровень включает в себя полностью или частично предыдущий показатель. Так, например, число работников на 1 апреля 1999 г. полностью или частично включает число работников на 1 марта.
Если сложить эти показатели, то получим повторный счет тех работников, которые работали в течение всего месяца. Полученная сумма экономического содержания не имеет, это расчетный показатель.
В моментных рядах динамики с равными интервалами времени средний уровень ряда исчисляется по формуле средней хронологической:
Рассмотрим методику такого
расчета по следующим данным о
списочной численности
Число работников | |
на 1 января |
150 |
на 1 февраля |
145 |
на 1 марта |
162 |
на 1 апреля |
166 |
Необходимо вычислить средний уровень ряда динамики, в данном примере — среднюю списочную численность работников предприятия:
Расчет выполнен по формуле
средней хронологической. Средняя
списочная численность
В моментных рядах динамики
с неравными интервалами
Списочная численность работников предприятия за октябрь такова: на 1 октября — 200 человек, 7 октября принято 15 человек, 12 октября уволен 1 человек, 21 октября принято 10 человек и до конца месяца приема и увольнения работников не было. Эту информацию можно представить в следующем виде:
Число работников |
Число дней (период времени) |
200 |
6 (с 1 по 6 включительно) |
215 |
5 (с 7 по 11 включительно) |
214 |
9 (с 12 по 20 включительно) |
224 |
11 (с 21 по 31 включительно) |
При определении среднего уровня ряда надо учесть продолжительность периодов между датами, т. е. применять формулу средней арифметической взвешенной:
В данной формуле числитель ( ) имеет экономическое содержание. В приведенном примере числитель (6665 человеко-дней) — это календарный фонд времени работников предприятия за октябрь. В знаменателе (31 день) — календарное число дней в месяце.
В тех случаях, когда имеем моментный ряд динамики с неравными интервалами времени, а конкретные даты изменения показателя неизвестны исследователю, то сначала надо вычислить среднюю величину ( ) для каждого интервала времени по формуле средней арифметической простой, а затем вычислить средний уровень для всего ряда динамики, взвесив исчисленные средние величины продолжительностью соответствующего интервала времени . Формулы имеют следующий вид:
Рассмотренные выше ряды динамики состоят из абсолютных показателей, получаемых в результате статистических наблюдений. Построенные первоначально ряды динамики абсолютных показателей могут быть преобразованы в ряды производные: ряды средних величин и ряды относительных величин. Ряды относительных величин могут быть цепные (в % к предыдущему периоду) и базисные (в % к начальному периоду, принятому за базу сравнения — 100%). Расчет среднего уровня в производных рядах динамики выполняется по другим формулам.
Ряд средних величин
Сначала преобразуем приведенный выше моментный ряд динамики с равными интервалами времени в ряд средних величин. Для этого вычислим среднюю списочную численность работников предприятия за каждый месяц, как среднюю из показателей на начало и конец месяца( ): за январь (150+145):2=147,5; за февраль (145+162):2 = 153,5; за март (162+166):2 = 164.
Представим это в табличной форме.
Месяцы |
Среднесписочная численность работников |
Январь |
147,5 |
Февраль |
153,5 |
Март |
164,0 |
Средний уровень в производных рядах средних величин рассчитывается по формуле средней арифметичекой простой:
Заметим, что средняя списочная численность работников предприятия за 1 квартал, вычисленная по формуле средней хронологической на базе данных на 1 число каждого месяца и по средней арифметической — по данным производного ряда — равны между собой, т.е. 155 человек. Сравнение расчетов позволяет понять, почему в формуле средней хронологической начальный и конечный уровни ряда берутся в половинном размере, а все промежуточные уровни берутся в полном размере.
Ряды средних величин, производные от моментных или интервальных рядов динамики, не следует смешивать с рядами динамики, в которых уровни выражены средней величиной. Например, средняя урожайность пшеницы по годам, средняя заработная плата и т.д.
Ряды относительных величин
В экономической практике очень широко используют ряды относительных величин. Практически любой первоначальный ряд динамики можно преобразовать в ряд относительных величин. По сути преобразование означает замену абсолютных показателей ряда относительными величинами динамики.
Средний уровень ряда в
относительных рядах динамики называется
среднегодовым темпом роста. Методы
его расчета и анализа
Анализ рядов динамики
Для обоснованной оценки развития явлений во времени необходимо исчислить аналитические показатели: абсолютный прирост, коэффициент роста, темп роста, темп прироста, абсолютное значение одного процента прироста.
В таблице приведен цифровой пример, а ниже даны формулы расчета и экономическая интерпретация показателей.
Анализ динамики производства продукта "A" по предприятию за 1994-1998 гг.
Годы |
Произведено, |
Абсолютные тыс. т |
Коэффициенты роста |
Темпы |
Темпы прироста, % |
Значение 1% при-роста, тыс. т. | ||||
Цеп-ные |
базис-ные |
цеп-ные |
базис-ные |
цеп-ные |
базис-ные |
цеп-ные |
базис-ные |
|||
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 | ||
1994 |
200 |
- |
- |
- |
1,00 |
- |
100 |
- |
- |
- |
1995 |
210 |
10 |
10 |
1,050 |
1,05 |
105,0 |
105 |
5,0 |
5,0 |
2,00 |
1996 |
218 |
8 |
18 |
1,038 |
1,09 |
103,8 |
109 |
3,8 |
9,0 |
2,10 |
1997 |
230 |
12 |
30 |
1,055 |
1,15 |
105,5 |
115 |
5,5 |
15,0 |
2,18 |
1998 |
234 |
4 |
34 |
1,017 |
1,17 |
101,7 |
117 |
1,7 |
17,0 |
2,30 |
Абсолютные приросты (Δy) показывают, на сколько единиц изменился последующий уровень ряда по сравнению с предыдущим (гр.3. — цепные абсолютные приросты) или по сравнению с начальным уровнем (гр.4. — базисные абсолютные приросты). Формулы расчета можно записать следующим образом:
При уменьшении абсолютных значений ряда будет соответственно "уменьшение", "снижение".
Показатели абсолютного прироста свидетельствуют о том, что, например, в 1998 г. производство продукта "А" увеличилось по сравнению с 1997 г. на 4 тыс. т, а по сравнению с 1994 г. — на 34 тыс. т.; по остальным годам см. табл. 11.5 гр. 3 и 4.
Коэффициент роста показывает, во сколько раз изменился уровень ряда по сравнению с предыдущим (гр.5 — цепные коэффициенты роста или снижения) или по сравнению с начальным уровнем (гр.6 — базисные коэффициенты роста или снижения). Формулы расчета можно записать следующим образом:
Темпы роста показывают, сколько процентов составляет последующий уровень ряда по сравнению с предыдущим (гр.7 — цепные темпы роста) или по сравнению с начальным уровнем (гр.8 — базисные темпы роста). Формулы расчета можно записать следующим образом:
Так, например, в 1997 г. объем производства продукта "А" по сравнению с 1996 г. составил 105,5 %.
Темпы прироста показывают, на сколько процентов увеличился уровень отчетного периода по сравнению с предыдущим (гр.9- цепные темпы прироста) или по сравнению с начальным уровнем (гр.10- базисные темпы прироста ). Формулы расчета можно записать следующим образом:
Тпр = Тр - 100% или Тпр= абсолютный прирост / уровень предшествующего периода * 100%
Так, например, в 1996 г. по сравнению с 1995 г. продукта "А" произведено больше на 3,8 % (103,8 %- 100%) или (8:210)х100%, а по сравнению с 1994 г. — на 9% (109% — 100%).
Если абсолютные уровни в ряду уменьшаются, то темп будет меньше 100% и соответственно будет темп снижения (темп прироста со знаком минус).
Абсолютное значение 1% прироста (гр. 11) показывает, сколько единиц надо произвести в данном периоде, чтобы уровень предыдущего периода возрос на 1 %. В нашем примере, в 1995 г. надо было произвести 2,0 тыс. т., а в 1998 г. — 2,3 тыс. т., т.е. значительно больше.
Определить величину абсолютного значения 1% прироста можно двумя способами:
Абсолютное значение 1% прироста =
В динамике, особенно за длительный период, важен совместный анализ темпов прироста с содержанием каждого процента прироста или снижения.
Заметим, что рассмотренная
методика анализа рядов динамики
применима как для рядов
Информация о работе Виды рядов динамики. Методы расчета среднего уровня в рядах динамики