Автор работы: Пользователь скрыл имя, 09 Ноября 2012 в 18:10, курсовая работа
Статистика – это самостоятельная общественная наука, которая изучает
количественную сторону массовых явлений и процессов, исследует
закономерности общественного развития в конкретных условиях, места и
времени. Статистика изучает статистические закономерности, которые в
отличие от динамических проявляются только в массовых процессах.
Данная курсовая работа состоит из двух глав: теоретической и расчётной.
Введение…………………………………………………………………3
Глава 1. Теоретическая часть.
14. Виды рядов распределения.
14.1. Виды рядов распределения……………………………………..5
14.2. Ранжированный ряд……………………………………………..5
14.3. Дискретный ряд………………………………………………….6
14.4. Интервальный вариационный ряд……………………………7
14.5. Частота повторения……………………………………………...8
24. Мода и медина.
24.1. Мода………………………………………………………………..9
24.2. Медиана…………………………………………………………..10
24.3 Соотношение между средней величиной, медианой и модой……………………………………………………………………12
Глава 2. Расчётная часть.
Задачи №1-№10……………………………………………………13-23
Заключение……………………………………………………………24
Список использованой литературы……………
МЭИ ИББ
Курсовая работа по статистике
на тему:
«14.Виды рядов распределения.
24.Мода и медиана.»
Выполнил студент группы ИБ-03-05:
Чувиков Александр Владимирович
Проверила:
Демченко Наталья Леонидовна
Москва 2006
Глава 1. Теоретическая часть.
14. Виды рядов распределения.
14.1. Виды рядов распределения……………………………………..5
14.2. Ранжированный ряд……………………………………………..5
14.3. Дискретный ряд………………………………………………….6
14.4. Интервальный вариационный ряд……………………………7
14.5. Частота повторения……………………………………………...
24. Мода и медина.
24.1. Мода………………………………………………………………..
24.2. Медиана………………………………………………………….
24.3 Соотношение между средней
величиной, медианой и модой………
Глава 2. Расчётная часть.
Задачи №1-№10……………………………………………
Заключение……………………………………………………
Список использованой литературы………………………………..27
количественную сторону массовых явлений и процессов, исследует
закономерности общественного развития в конкретных условиях, места и
времени. Статистика изучает статистические закономерности, которые в
отличие от динамических проявляются только в массовых процессах.
Данная курсовая работа состоит из двух глав: теоретической и расчётной.
В теоретической главе
я рассмотрел два вопроса, которые
кажутся мне наиболее важными
и интересными. В них мы подробно
разберем важнейшую часть
Статистические ряды распределения являются одним из наиболее важных элементов статистики. Они представляют собой составную часть метода статистических сводок и группировок, но, по сути, ни одно из статистических исследований невозможно произвести, не представив первоначально полученную в результате статистического наблюдения информацию в виде статистических рядов распределения.
Актуальность данной темы обусловлена тем, что статистические ряды распределения являются базисным методом для любого статистического анализа. Понимание данного метода и навыки его использования необходимы для проведения статистических исследований.
В статистике применяют два вида средних величин, которые определяются только структурой распределения. Такими величинами являются мода и медиана. Их используют как среднюю характеристику в тех совокупностях, где расчёт средне степенной невозможен или нецелесообразен. Мода – наиболее часто встречающееся значение признака у единиц данной совокупности. Мода применяется при изучении качества продукции, покупательского спроса, конструировании одежды, обуви и т. д.
Медиана – варианта, делящая ранжированный ряд на две равные части.
Вторая глава – расчетная. Она состоит из задач, которые включают в себя большой спектр заданий (расчёта среднего показателя, нахождение моды и медианы, метод постоянной средней и многое другое).
Глава 1.Теоретическая часть.
14.Виды рядов распределения.
14.1. Виды рядов распределения
Важнейшей частью статистического анализа является построение рядов распределения (структурной группировки) с целью выделения характерных свойств и закономерностей изучаемой совокупности. В зависимости от того, какой признак (количественный или качественный) взят за основу группировки данных, различают соответственно типы рядов распределения.
Если за основу группировки взят качественный признак, то такой ряд распределения называют атрибутивным (распределение по видам труда, по полу, по профессии, по религиозному признаку, национальной принадлежности и т.д.).
Если ряд распределения построен по количественному признаку, то такой ряд называют вариационным. Построить вариационный ряд - значит упорядочить количественное распределение единиц совокупности по значениям признака, а затем подсчитать числа единиц совокупности с этими значениями (построить групповую таблицу).
Выделяют три формы вариационного ряда: ранжированный ряд, дискретный ряд и интервальный ряд.
14.2. Ранжированный ряд
Ранжированный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.
Банк |
Капитал (тыс. руб.) |
СБ РФ |
96007237 |
Внешторгбанк |
47991724 |
Другие формы вариационного ряда - групповые таблицы, составленные по характеру вариации значений изучаемого признака. По характеру вариации различают дискретные (прерывные) и непрерывные признаки.
14.3. Дискретный ряд
Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести тарифный разряд, количество детей в семье, число работников на предприятии и т.д. Эти признаки могут принимать только конечное число определенных значений.
Дискретный вариационный ряд представляет таблицу, которая состоит из двух граф. В первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака.
Кол-во детей в семье |
0 |
1 |
2 |
3 |
4 |
Кол-во семей |
20 |
40 |
45 |
10 |
5 |
14.4. Интервальный вариационный ряд
Если признак имеет
Групповая таблица здесь также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота).
Размер собственного капитала (тыс.руб.) |
0 - 10000 |
10000 - 50000 |
Свыше 50000 |
Кол-во банков |
20 |
40 |
10 |
При построении интервального вариационного ряда необходимо выбрать
оптимальное количество групп, самый распространенный способ по формуле
Стерджесса:
k 1 + 3,32 lg n= 1 + 1,44 ln n,
где k — число групп;
n — численность совокупности.
14.5. Частота повторения
Частота (частота повторения) - число повторений отдельного варианта значений признака, обозначается fi , а сумма частот, равная объему исследуемой совокупности, обозначается
где k - число вариантов значений признака
Очень часто таблица дополняется графой, в которой подсчитываются накопленные частоты S, которые показывают, какое количество единиц совокупности имеет значение признака не большее, чем данное значение.
Частоты ряда f могут заменяться частностями w, выраженными в относительных числах (долях или процентах). Они представляют собой отношения частот каждого интервала к их общей сумме, т.е.:
При построении вариационного ряда с интервальными значениями прежде всего необходимо установить величину интервала i, которая определяется как отношение размаха вариации R к числу групп m:
где R = xmax - xmin ; m = 1 + 3,322 lgn (формула Стерджесса); n - общее число единиц совокупности.
24. Мода и медиана
24.1. Мода.
Бесспорно, важное значение имеет такая величина признака, которая встречается в изучаемом ряду, в совокупности чаще всего. Такую величину принято называть модой и обозначать Мо. В дискретном ряду мода определяется без вычисления как значение признака с наибольшей частотой. Обычно встречаются ряды с одним модальным значением признака. Если два или несколько равных (и даже несколько различных, но больших, чем соседние) значений признака имеются в вариационном ряду, он считается соответственно бимодальным либо мультимодальным. Это говорит о неоднородности совокупности, возможно, представляющей собой агрегат нескольких совокупностей с разными модами.
Так и в толпе туристов, приехавших из разных стран, вместо одной, преобладающей среди местных жителей модной одежды можно встретить смесь «мод», принятых у разных народов мира.
В интервальном вариационном ряду, тем более при непрерывной вариации признака, строго говоря, каждое значение признака встречается только один раз. Модальным интервалом является интервал с наибольшей частотой. Внутри этого интервала находят условное значение признака, вблизи которого плотность распределения, Т.е. число единиц совокупности, приходящееся на единицу измерения варьирующего признака, достигает максимума. Это условное значение и считается точечной модой. Логично предположить, что такая точечная мода располагается ближе к той из границ интервала, за которой частота в соседнем интервале больше частоты в интервале за другой границей модального интервала. Отсюда имеем обычно применяемую формулу :
Мо = хо + fMo - fMo - 1 • i,
(/Мо - fmo-1) + (/Мо - fMo+ 1)
где хо - нижняя граница модального интервала; fMo - частота в модальном интервале;
fMo - 1 - частота в предыдущем интервале;
fMo + 1 - частота в следующем интервале за модальным; i - величина интервала.
Вычисление моды в интервальном ряду весьма условно.
Приближенно Мо может быть определена графически .
В равно интервальном ряду при расчете моды следует использовать плотность распределения.
К изучению структуры вариационного ряда средняя арифметическая величина тоже имеет отношение, хотя основное значение этого обобщающего показателя другое.
24.2. Медиана.
При изучении вариации
применяются такие
В интервальном вариационном ряду для нахождения медианы применяется формула
Ме = Хе + fi...L (~ - fMe - 1) ,
Ме где Ме - медиана;
Хе - нижняя граница интервала, в котором находится медиана;
п - число наблюдений; .
!Ме -\ - накопленная частота в интервале, предшествующем медиан-
ному;
fMe - частота в медианном интервале; j - величина интервала.
Например, если имеется 100 наблюдений, то медианными,
Т.е. стоящими в середине ряда, являются: 100,,+ 1= 50,5 - 50-я
и 51-я единицы.
В нашем примере имеется
начала ряда значение урожайности. Как видно из ряда накопленных частот , оно находится в четвертом интервале. Тогда
Ме = 25 + 724135 . 5 = 29,5 цjгa.
При нечетном числе единиц совокупности номер медианы, как видим, равен не 'Lfj: 2, а ('Lfj + 1) : 2, но это различие несущественно и обычно игнорируется на практике.
В равно интервальном ряду медиана - это середина среднего интервала при их нечетном числе или средняя арифметическая из границ двух средних интервалов при их четном числе.
В дискретном вариационном ряду медианой следует считать значение признака в той группе, в которой накопленная частота превышает половину численности совокупности. Например, для данных табл. 5.1 медианой числа забитых за игру мячей будет два.
24.3. Соотношение между средней величиной, медианой и модой.
Различие между средней арифметической величиной, медианой и модой в данном распределении невелико. Если распределение по форме близко к нормальному закону, то медиана находится между модой и средней величиной, причем ближе к средней, чем к моде.
При правосторонней асимметрии х > Ме > Мо; при левосторонней асимметрии х < Ме < Мо.
Me=230 + 10 * ((51,5 – 32)/26)=237,5=Mo
Для умеренно асимметричных распределений справедливо равенство: IMo - хl = 31Ме - xl.
Глава 2. Расчётная часть.
Выполнить расчёт средней выработки на одного рабочего в бригаде из 12 человек.
Выработка каждого рабочего представлена в следующей таблице:
Выработка одного рабочего деталей, штук | |||||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
20 |
18 |
22 |
15 |
27 |
16 |
14 |
28 |
21 |
25 |
17 |
19 |
Информация о работе Виды рядов распределения. Мода и медиана