Выравнивание динамических рядов

Автор работы: Пользователь скрыл имя, 22 Ноября 2014 в 15:23, реферат

Описание работы

Ряды динамики – статистические данные, отображающие развитие во времени изучаемого явления. Их также называют динамическими рядами, временными рядами.

В каждом ряду динамики имеется два основных элемента:
1) показатель времени t;
2) соответствующие им уровни развития изучаемого явления y;

В качестве показаний времени в рядах динамики выступают либо определенные даты (моменты), либо отдельные периоды (годы , кварталы, месяцы, сутки).
Уровни рядов динамики отображают количественную оценку (меру) развития во времени изучаемого явления. Они могут выражаться абсолютными, относительными или средними величинами.

Содержание работы

1. Теоретическая часть
1.1 Основные понятия о рядах динамики
1.2 Методы сглаживания и выравнивания динамических рядов
1.3 Методы «механического сглаживания»
1.4 Методы «аналитического» выравнивания
2. Расчетная часть.
3. Список литературы.

Файлы: 1 файл

SAMOSTOYaTEL_NAYa_UChEBNAYa_RABOTA_STUDENTA.doc

— 118.00 Кб (Скачать файл)

 

 

 

 

 

 

 

 

 

 

 

 

САМОСТОЯТЕЛЬНАЯ УЧЕБНАЯ РАБОТА СТУДЕНТА № 2

на тему:

«Выравнивание динамических рядов»

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СОДЕРЖАНИЕ

 

1.   Теоретическая часть

1.1  Основные понятия о рядах динамики

1.2  Методы сглаживания и выравнивания динамических рядов

1.3  Методы «механического сглаживания»

1.4  Методы «аналитического» выравнивания

2. Расчетная часть.

3. Список литературы.

                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.   Теоретическая  часть

 

1.1 Основные понятия  о  рядах динамики

 

    Ряды динамики – статистические данные, отображающие развитие во времени изучаемого явления. Их также называют динамическими рядами, временными рядами.

 

В каждом ряду динамики имеется два основных элемента:

1) показатель времени t;

2) соответствующие им  уровни развития изучаемого явления y;

 

В качестве показаний времени в рядах динамики выступают либо определенные даты (моменты), либо отдельные периоды (годы , кварталы, месяцы, сутки).

Уровни рядов динамики отображают количественную оценку (меру) развития во времени изучаемого явления. Они могут выражаться абсолютными, относительными или средними величинами.

 

Ряды динамики различаются по следующим признакам:

 

1) По времени. В зависимости от характера изучаемого явления уровни рядов динамики могут относиться или к определенным датам (моментам) времени, или к отдельным периодам. В соответствии с этим ряды динамики подразделяются на моментные и интервальные. Моментные ряды динамики отображают состояние изучаемых явлений на определенные даты (моменты) времени. Примером моментного ряда динамики является следующая информация о списочной численности работников магазина в1991 году (таб. 1):

                                                                                                                                        Таблица 1

Списочная численность работников магазина в 1991 году

 

Дата

1.01.91

1.04.91

1.07.91

1.10.91

1.01.92

Число работников, чел.

192

190

195

198

200


 

Особенностью моментного ряда динамики является то, что в его уровни могут входить одни и те же единицы изучаемой совокупности. Хотя и в моментном ряду есть интервалы – промежутки между соседними в ряду датами, - величина того или иного конкретного уровня не зависит от продолжительности периода между двумя датами. Так, основная часть персонала магазина, составляющая списочную численность на 1.01.1991, продолжающая работать в течение данного года, отображена в уровнях последующих периодов. Поэтому при суммировании уровней моментного ряда может возникнуть повторный счет. Посредством моментных рядов динамики в торговле изучаются товарные запасы, состояние кадров, количество оборудования и других показателей, отображающих состояние изучаемых явлений на отдельные даты (моменты) времени.

Интервальные ряды динамики отражают итоги развития (функционирования) изучаемых явлений за отдельные периоды (интервалы) времени. Примером интервального ряда могут служить данные о розничном товарообороте магазина в 1987 – 1991 гг. (таб. 2):

                                                                                                                                  

 

 

 

 

 

    Таблица 2

Объем розничного товарооборота магазина в 1987 - 1991 гг.

 

Год

1987

1988

1989

1990

1991

Объем розничного товарооборота, тыс. р.

885.7

932.6

980.1

1028.7

1088.4


 

Каждый уровень интервального ряда уже представляет собой сумму уровней за более короткие промежутки времени. При этом единица совокупности, входящая в состав одного уровня, не входит в состав других уровней. Особенностью интервального ряда динамики является то, что каждый его уровень складывается из данных за более короткие интервалы времени.

Например, суммируя товарооборот за первые три месяца года, получают его объем за I квартал, а суммируя товарооборот за четыре квартала, получают его величину за год, и т. д. При прочих равных условиях уровень интервального ряда тем больше, чем больше длина интервала, к которому этот уровень относится. Свойство суммирования уровней за последовательные интервалы времени позволяет получить ряды динамики более укрупненных периодов. Посредством интервальных рядов динамики в торговле изучают изменения во времени поступления и реализации товаров, суммы издержек обращения и других показателей, отображающих итоги функционирования изучаемого явления за отдельные периоды.

 

Структура ряда динамики:

 

Всякий ряд динамики теоретически может быть представлен в виде составляющих:

1) тренд – основная тенденция развития динамического ряда(к увеличению или снижению его уровней);

2) циклические (периодические колебания, в том числе сезонные); случайные колебания.

 

1.2 Методы сглаживания и выравнивания динамических рядов.

 

Исключение случайных колебаний значений уровней ряда осуществляется с помощью нахождения «усредненных» значений. Способы устранения случайных факторов делятся на две больше группы:

1. Способы «механического» сглаживания колебаний путем усреднения значений ряда относительно других, расположенных рядом, уровней ряда.

2. Способы «аналитического» выравнивания, т. е. определения сначала функционального выражения тенденции ряда, а затем новых, расчетных значений ряда.

 

1.3 Методы «механического» сглаживания.

 

Сюда относятся:

а. Метод усреднения по двум половинам ряда, когда ряд делится на две части. Затем, рассчитываются два значения средних уровней ряда, по которым графически определяется тенденция ряда. Очевидно, что такой тренд не достаточно полно отражает основную закономерность развития явления.

б. Метод укрупнения интервалов, при котором производится увеличение протяженности временных промежутков, и рассчитываются новые значения уровней ряда.

в. Метод скользящей средней. Данный метод применяется для характеристики тенденции развития исследуемой статистической совокупности и основан на расчете средних уровней ряда за определенный период.

Последовательность определения скользящей средней:

 

-    устанавливается  интервал сглаживания или число  входящих в него уровней.  Если  при расчете средней учитываются  три уровня, скользящая средняя  называется трехчленной, пять уровней  – пятичленной и т.д. Если сглаживаются  мелкие, беспорядочные колебания уровней в ряду динамики, то интервал (число скользящей средней) увеличивают. Если волны следует сохранить, число членов уменьшают.

-     Исчисляют  первый средний уровень по  арифметической простой:

y1 = Sy1/m,

где y1 – I-ый уровень ряда;

m – членность скользящей средней.

 -    первый уровень отбрасывают, а в  исчисление средней включают уровень, следующий за последним уровнем, участвующем в первом расчете. Процесс продолжается до тех пор, пока в расчет y будет включен последний уровень исследуемого ряда динамики yn.

 -    по ряду динамики, построенному из средних уровней, выявляют общую тенденцию развития явления. Отрицательной стороной использования метода скользящей средней является образование сдвигов в колебаниях уровней ряда, обусловленных «скольжением» интервалов укрупнения. Сглаживание с помощью скользящей средней может привести к появлению «обратных» колебаний, когда выпуклая «волна» заменяется на вогнутую. В последнее время стала рассчитываться адаптивная скользящая средняя. Ее отличие состоит в том, что среднее значение признака, рассчитываемое также как описано выше, относится не к середине ряда, а к последнему промежутку времени в интервале укрупнения. Причем предполагается, что адаптивная средняя зависит от предыдущего уровня в меньшей степени, чем от текущего. То есть., чем больше промежутков времени между уровнем ряда и средним значением, тем меньшее влияние оказывает значение этого уровня ряда на величину средней.

г. Метод экспоненциальной средней. Экспоненциальная средняя  – это адаптивная скользящая средняя, рассчитанная с применением весов, зависящих от степени «удаленности» отдельных уровней ряда от среднего значения. Величина веса убывает по мере удаления уровня по хронологической прямой от среднего значения в соответствии с экспоненциальной функцией, поэтому такая средняя называется экспоненциальной. На практике применяется многократное экспоненциальное сглаживания ряда динамики, которое используется для прогнозирования развития явления.

Вывод: способы, включенные в первую группу, ввиду применяемых методик расчета предоставляют исследователю очень упрощенное, неточное, представление о тенденции в ряду динамики. Однако корректное применение этих способов требует от исследователя глубины знаний о динамике различных социально - экономических явлений.

 

1.4 Методы «аналитического»  выравнивания

 

Более точным способом отображения тенденции динамического ряда является аналитическое выравнивание, т. е. выравнивание с помощью аналитических формул. В этом случае динамический ряд выражается в виде функции у (t), в которой в качестве основного фактора принимается время t, и изменения аргумента функции определяют расчетные значения уt.

Фактическими (или эмпирическими) уровнями ряда динамики называют исходные данные об изменении явления, т. е. данные, полученные опытным путем, посредством наблюдения. Они обозначаются уi. Расчетными (или теоретическими) уровнями ряда называют значения, полученные в результате подстановки в уравнение тренда значений t, и обозначают их.

Целью аналитического выравнивания динамического ряда является определение аналитической или графической зависимости f(t) . На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t) , а затем анализируют поведение отклонений от тенденции. Функцию f(t) выбирают таким образом , чтобы она давала содержательное объяснение изучаемого процесса . Чаще всего при выравнивании используются следующий зависимости :

линейная ;параболическая ;

экспоненциальная или ).

 

1)Линейная зависимость выбирается в тех случаях, когда в исходном временном ряду наблюдаются более или менее постоянные абсолютные и цепные приросты, не проявляющие тенденции ни к увеличению, ни к снижению.

2)Параболическая зависимость используется, если абсолютные цепные приросты сами по себе обнаруживают некоторую тенденцию развития, но абсолютные цепные приросты абсолютных цепных приростов (разности второго порядка) никакой тенденции развития не проявляют.

3)Экспоненциальные зависимости  применяются, если в исходном временном ряду наблюдается либо более или менее постоянный относительный рост (устойчивость цепных темпов роста, темпов прироста, коэффициентов роста), либо, при отсутствии такого постоянства, -- устойчивость в изменении показателей относительного роста (цепных темпов роста цепных же темпов роста, цепных коэффициентов роста цепных же коэффициентов или темпов роста и т.д.)

 

Целью аналитического выравнивания является:

- определение вида функционального  уравнения;

- нахождения параметров  уравнения;

- расчет «теоретических», выровненных уровней, отображающих  основную тенденцию ряда динамики.

 

Графическое отображение изменения уровней ряда играет большую роль в применении данного вида выравнивания. Оно позволяет ускорить процедуру анализа и увеличить степень наглядности полученных результатов.

     Сезонность – изменения динамических рядов, имеющих внутригодичную цикличность, зависящие от календарного периода года, явлениями природы, праздниками и др. Например, объем продаж продукции меховой фабрики вырастет в октябре, в ноябре достигнет максимума, снизится к марту, и затем до сентября - октября будет держаться на очень низком уровне. В качестве примера, интересно сравнить сезонные изменения уровня цен в России и странах Западной Европы. В России уровень цен в предпраздничные дни (например, рождество, Новый год, 9 мая, 1 сентября и т. д.) заметно растет. Тогда как в Западной Европе, как правило, в предпраздничные дни проводятся распродажи, т. е. в большинстве своем цены падают.

Явления, подверженные сезонным изменениям, необходимо исследовать на предмет наличия основной тенденции развития. Для этого необходимо распределить объем изменения явления между сезонной составляющей и основной тенденцией. Изучение и измерение сезонности ряда динамики осуществляется с помощью специального показателя – индекса сезонности. Существует несколько вариантов анализа динамики с помощью индекса сезонности.

Информация о работе Выравнивание динамических рядов