Автор работы: Пользователь скрыл имя, 27 Декабря 2013 в 13:43, курсовая работа
При сборке полупроводниковых кристаллов с p-n-переходами в корпуса используют метод стабилизации параметров введением в корпус прибора кремнийорганического вазелина в сочетании с влагопоглощающими добавками (гетерами), например с цеолитом. Изоляционный вазелин представляет собой смесь кремнийорганической жидкости с мелкодисперсным наполнителем в виде вязкой пасты. Широкое применение получили кремнийорганические вазелины КВ-3, КВ-2, КВ-3А.
При сборке полупроводниковых кристаллов с p-n-переходами в корпуса используют метод стабилизации параметров введением в корпус прибора кремнийорганического вазелина в сочетании с влагопоглощающими добавками (гетерами), например с цеолитом. Изоляционный вазелин представляет собой смесь кремнийорганической жидкости с мелкодисперсным наполнителем в виде вязкой пасты. Широкое применение получили кремнийорганические вазелины КВ-3, КВ-2, КВ-3А.
Вазелин обладает высокими изоляционными свойствами: удельное объёмное сопротивление вазелина при температуре 200С составляет 1014ом*, а при 1500-1012ом*см; тангенс угла диэлектрических потерь при частоте 106 гц-0,006; диэлектрическая проницаемость-2,8, а диэлектрическая прочность-15 кВ \ мм.
Перед нанесением
на полупроводниковые кристаллы
или корпуса вазелин подвергают
вакуумной сушке при
Так же герметизацию производят цеолитным адсорбентом и синтетическими цеолитами:
Цеолитный адсорбент — порошкообразный синтетический цеолитный материал CaA, применяемый для создания защитной атмосферы во внутренних областях корпусов полупроводниковых приборов, выпускается двух видов: мелкокристаллический с размерами кристаллов от 1 до 5 мкм и крупнокристаллический с размерами кристаллов от 3 до 8 мкм. Статическая активность – влогоёмкость при относительной влажности воздуха 0,03% в течение 24 ч равна 18%. На основе порошка изготовляют таблетки диаметром 4 и 6 мм и толщиной 0,6 мм.
Синтетические цеолиты — высокоэффективные алюмосиликатные адсорбенты; в обезвоженном виде – пористые кристаллы с размерами около 1 мкм. Поры цеолитов представляют собой сферические полости с диаметром от 1,14 до 1,19 нм, соединённые между собой более узкими отверстиями, называемые окнами. Эффективные диаметры окон существенно отличаются в каждом типе цеолита и зависят от природы ионообменного катиона. Выпускаются пять марок цеолитов: КА, NaA, CaA, NaX и CaX, в которых эффективный диаметр окон соответственно равен 0,3;0,4;0,5;0,8;0,9 нм. Находящиеся в полостях цеолитов катионы создают в них области с неоднородными электростатическими полями, поэтому цеолиты особенно энергично адсорбируют электрически несимметричные молекулы воды, двуокиси углерода, метанола, а так же органических веществ.
Особенностью адсорбционных свойств пористых кристаллов цеолитов является молекулярно-ситовое действие; в первичной пористой структуре адсорбируются молекулы малых размеров, более крупные молекулы, для которых входы в полости через окна недоступны, не адсорбируются. Поэтому при использовании цеолитов необходимо учитывать органические адсорбируемости веществ за счёт молекулярно-ситового действия.
Кристаллы цеолитов микроскопических размеров в смеси с добавками 15–20% глины формируют в таблетки, гранулы или шарики различных размеров, которые для повышения механической прочности подвергают термической обработке в течение 2-6 часов при 550-600 С. Адсорбционные свойства формованных цеолитов по сравнению с кристаллическими обычно ниже на 20% в результате введения глины. Формованные цеолиты применяются для глубокой осушки и тонкой очистки газов и жидкостей.
Таблице 7.Основные свойства цеолитов.
Характеристика |
Марка цеолита | ||||
KA |
NaK |
CaA |
NaX |
CaX | |
Насыпная масса, г/см2 |
0,62 |
0,65 |
0,65 |
0,6 |
0,6 |
Механическая прочность на раздавливание, Н/м2 |
4×106 |
5×106 |
5×106 |
4×106 |
4×106 |
Водостойкость, мас. % |
96 |
96 |
96 |
96 |
96 |
Динамическая активность по парам воды, мг/см3, для таблеток диаметров, мм: |
|||||
4,5 |
62 |
90 |
72 |
95 |
90 |
3,6 |
70 |
10 |
80 |
100 |
95 |
2,0 |
85 |
12 |
95 |
105 |
100 |
Динамическая активность по углекислому газу, мг/см3 |
2,0 |
— |
— |
— |
— |
Динамическая активность по парам бензола, мг/см3, для таблеток диаметром, мм: |
|||||
4,5 |
— |
— |
— |
52 |
52 |
3,6 |
— |
— |
— |
65 |
62 |
2,0 |
— |
— |
— |
68 |
65 |
Потери при прокаливании, мас. % |
5 |
5 |
5 |
5 |
5 |
В полупроводниковой технологии для защиты кристаллов с p-n-переходами применяются плёнки на основе окисей металлов: алюминия, титана, бериллия, циркония. Исходный материал берут в виде порошка, а в качестве несущего агента может быть использован галоген или галоидное соединение водорода. Через рабочую камеру пропускают инертный газ и устанавливают перепад температур между источником защитного материала и полупроводниковым кристаллом. Температура источника должна быть выше температуры кристаллов, причём с увеличением разницы температуры скорость реакции повышается.
Для осаждения защитных плёнок Al203, BeO, TiO2, ZnO2 температуру источника выбирают в диапазоне 800–1200 С, кристаллов – в диапазоне 400–800 С, а расстояние между ними устанавливается в зависимости от требуемой разницы температур (от 10 до 15 см) В таблице 5 приведены режимы осаждения защитных плёнок окислов металлов.
Таблица 8
Материал источника |
Несущий агент |
Температура источника, 0С |
Температура кристаллов, 0С |
Al2O3 |
HCl(HBr) |
800–1000 |
400–700 |
BeO |
HCl(HBr) |
900–1200 |
500–750 |
TiO2 |
HCl(HBr,Cl2) |
800–1000 |
500–700 |
ZnO2 |
HCl(HBr) |
1000–1200 |
500–800 |
Процесс осаждения защитной плёнки на полупроводниковые кристаллы с p-n-переходами проводят в кварцевой трубе, в одном конце которого помещают материал источника, например Al2O3 , а в другом – подложку с кристаллами. Сначала в трубе создают вакуум, а потом вводят необходимое количество инертного газа. Труба имеет две температурные зоны: 900 С – для источника, 500 С – для кристаллов.
В качестве защитного материала можно использовать также свинцовый сурик Pb3O4, растворенный в смеси из 7,5% полиэтилена и 92%полибутилена и перемещённый при температуре 125–160 0С. Полученный состав при температуре 112 С наносят на поверхность кристаллов с p-n-переходами. В качестве окисляющего агента используют хромат цинка ZnCrO4. Кроме того, защитные плёнки могут быть получены на основе смесей Pb3O4 и ZnCrO4, SrCrO4 . Порошок этих веществ смешивают с летучими растворителями получают суспензии, которые наносят на поверхность полупроводниковых кристаллов распылением. Кристаллы с напылённым защитным слоем выдерживают в течение нескольких минут при комнатной температуре до полного испарения растворителя, а затем нагревают до 200 С. В результате нагревания частицы нанесённого вещества выделяют ионы кислорода, которые замещают ионы водорода на поверхности полупроводникового материала, и на поверхности кристаллов образуется плотная защитная плёнка. Этот способ защиты позволяет снизить обратные токи приборов на один-два порядка.
Вакуумным катодным распылением Al2O3, MgF2, Ta2O5, TiO2, ThO2, ZnO2, BeO, и MgO на поверхности кристаллов с p-n-переходами могут быть получены защитные диэлектрические плёнки, которые представляют собой с поверхностью полупроводникового кристалла.
Для защиты и стабилизации электрических параметров p-n-переходов проводят процесс титанирования, который состоит в том, что на поверхность кристаллов с p-n-переходами осаждают один из сложных эфиров: негидролизированный титановый эфир, тетраизопропилтитанат, тетрабутилтитанат или тетраэтилгексинтитанат. Полученное покрытие стабилизируют термическим прогревом или при помощи катализаторов и получают прочие, химически связанные с поверхностью полупроводникового кристалла плёнки двуокиси титана.
Другой способ титанирования заключается в замещении слоя окиси германия на поверхности кристалла германия окисью титаната, которая наносится в потоке фтора. Фтор, проходя по трубопроводу и насыщаясь титаном, образует газообразный фторид титана, который реагирует с поверхностью кристаллов, покрытий слоем окиси германия. В результате на поверхности кристаллов образуется окись титана и парообразный фторид германия.
Для защиты поверхностей p-n-переходов может быть использован нагрев кристаллов при 1200 С в окисляющей атмосфере в присутствии ванадия или его соединения. Ванадий находится в рабочей камере в виде порошкообразной пятиокиси V2O5. Через рабочую камеру пропускают водяные пары, содержащие кислород с парциальным давлением 3,3*103 Па. После получения плёнки толщиной около 1 мкм лодочку с порошком V2O5 медленно выдвигают из печи.
Поверхность p-n-переходов защищают также плёнками окиси вольфрама, наносимыми плазменными распылением в атмосфере кислорода. Толщина плёнок от 10 до 1000 нм. Давление кислорода в рабочей камере может быть выбрано в диапазоне от 2,6*103 до6,6 Па. Катодом служит чашеобразный диск из вольфрама, а анодом – полупроводниковые пластины с p-n-переходами. Температура процесса не должна превышать 300 С. Напряжение на электродах от выбранного давления газа внутри рабочей камеры не должно превышать 500 В.
Нестабильность электрических параметров планарных структур вызвана движением ионов щелочных металлов как внутри, так и на поверхности окисла. Ионы щелочных металлов, особенно ионы натрия, обладают сравнительно большой подвижностью (для Na при Т=200°С, м=10-12 см2/(В*с)).
Одним из способов повышения стабильности планарных приборов является выращивание поверх слоя двуокиси кремния слоя Si3N4 или стекла. Стекло связывает ионы натрия и препятствует их перемещению, а Si3N4 улучшает изоляцию поверхности активных структур.
Для получения защитных плёнок нитрида кремния используются различные методы, основанные на следующих реакциях взаимодействия: силана с аммиаком, тетрахлорида кремния с аммиаком, силана с гидрозином, тетрабромида кремния с азотом. Кроме того, используются методы катодного и высокочастотного реактивного распыления.
Реакция взаимодействия SiH4 с NH3. Выращивание плёнок нитрида кремния производится химическим взаимодействием в газовой среде силана с аммиаком. Азотирование производится в кварцевой трубке при температурах 700–1100 С. В трубу с током водорода с расходом 4 л/мин подают пары силана и аммиака в соотношении 1:20. Избыток водорода препятствует преждевременному разложению силана (температура разложения силана 500С). В результате взаимодействия силана и аммиака на кремневой подложке образуется плёнка нитрида:
3SiH4+4NH3 —>Si3N4+12 H2
Уменьшение
скорости роста плёнки с увеличением
температуры свыше 1000 С обусловлено
недостаточным количеством сила
Реакция взаимодействия SiCl4 с NH3. При выращивании плёнок протекают следующие реакции. На начальной стадии образуются диимид кремния:
SiCl4+NH3–>Si(NH)2+4NH4Cl
При комнатной температуре реакция дальше не идёт, но происходит полимеризация диимида. При нагреве подложки протекает реакция:
6Si(NH)2–>2Si3(NH3)N2–>3Si2(
В результате образуются кристаллиты нитрида кремния. При температуре 1100–1200С получается полностью аморфная плёнка Si3N4. В толстых плёнках Si3N4 (свыше 1 мкм) имеются трещины, плотность которых растёт с толщиной и скоростью выращивания. Наличие трещин не только результат различия в коэффициентах термического расширения, но и следствие структурной неоднородности плёнки и подложки.
Получение защитных пленок Si3N4 этим методом проводиться в горизонтальной кварцевой трубе, в которую вводятся отдельно газовые смеси. Температура внутри рабочей камеры поддерживается равной 10000С. Температура всей остальной трубы поддерживается равной 375 С, чтобы исключить конденсацию на поверхности трубы хлорида аммония. Поток аммиака подают в трубу со скоростью 10 л/мин, а тетрахлорид – со скоростью (1-2)*10-3 моль/мин. Этот метод позволяет получить плёнки нитрида кремния, обладающей хорошей адгезией к поверхности пластин. Скорость осаждения плёнок Si3N4 зависит от соотношения между компонентами газовой смеси и температуры. На рис в приведена зависимость скорости роста плёнки Si3N4 от температуры для двух соотношений между SiCl4 и NH3 в реагирующей смеси.
Информация о работе Бескорпусная герметизация неорганическими материалами