Лекции по "Пищевым добавкам, используемым в молочной промышленности"

Автор работы: Пользователь скрыл имя, 17 Апреля 2013 в 20:08, курс лекций

Описание работы

В XIV веке в Европе начали применять селитру для засолки мяса и рыбы, изобрели другие способы консервирования. Вместе с тем на протяжении многих веков эта сторона человеческой деятельности практически не развивалась, что приводило к огромной потере продуктов питания, снижению их питательной ценности.
К началу XX столетия - с возникновением крупных городов, развитием сельского хозяйства и пищевых производств - обострились проблемы сохранности и безопасности продуктов питания. Для решения этих проблем в продукты питания стали добавлять различные вещества химической и биологической природы, препятствующие развитию микроорганизмов.

Содержание работы

Предисловие ………………………………………………….…………
Глава 1. Общие сведения о пищевых добавках ……………………..
1.1. Классификация пищевых добавок ………………………..
1.2. Безопасность пищевых добавок …………………………..
1.3. Подбор пищевых добавок ………………………………...
Контрольные вопросы ……………………………………..
Глава 2. Вещества, улучшающие внешний вид …………….….……
2.1. Пищевые красители …………………………………….....
2.1.1. Натуральные (природные) красители ……….…………
2.1.2. Синтетические красители …………………….…………
2.1.3. Минеральные (неорганические) красители ...………….
2.2. Цветокорректирующие материалы …………….…………
Контрольные вопросы …………………………………….
Глава 3. Вещества, изменяющие структуру и физико-химические свойства пищевых продуктов ………………….……………………...
3.1. Загустители и гелеобразователи …………………………..
3.1.1. Модифицированные крахмалы ………………... ……….
3.1.2. Целлюлоза и ее производные ……………………………
3.1.3. Пектины …………………………………………………..
3.1.4. Галактоманнаны: камедь рожкового дерева, гуаровая камедь ……………………………………………….…………………….
3.1.5. Полисахариды морских растений ……………………….
3.1.6. Желатин …………………………………………………
3.2. Эмульгаторы ………………………………………………..
3.2.1. Классификация эмульгаторов …………………………
3.2.2. Основные группы ПАВ ………………………………….
Контрольные вопросы …………………………………….
Глава 4. Вещества, влияющие на вкус и аромат пищевых продуктов …………………………………………………………………….
4.1. Подслащивающие вещества ………………………………..
4.1.1. Сахаристые крахмалопродукты…………………………..
4.1.2. Сахарозаменители и подсластители ……………………..
4.2. Ароматизаторы ……………………………………. ……….
4.2.1. Эфирные масла и душистые вещества …………………..
4.2.2. Пищевые ароматизаторы идентичные натуральным …
4.2.3. Пряности и приправы ………………………….…………
4.3. Пищевые добавки, усиливающие и модифицирующие вкус и аромат ……………………………………………………………..
Контрольные вопросы ……………………………………..
Глава 5. Пищевые добавки, замедляющие микробиологическую и окислительную порчу пищевого сырья …………………………...
5.1. Консерванты ………………………………………………..
5.2. Антибиотики ………………………………………………..
5.3. Пищевые антиокислители …………………………………
Глава 6. Биологически активные добавки …………………………..
Список литературы ……………………………………………………

Файлы: 1 файл

пищевые добавки.docx

— 164.83 Кб (Скачать файл)

Особенности химического строения и свойств  основных фракций крахмала, а также их соотношение в нативном крахмале, зависящее от вида растительного источника (картофель, рис, кукуруза и т. п.), определяют основное технологическое свойство нативного крахмала - способность растворяться при нагревании в воде с образованием вязких коллоидных растворов (клейстеров). Однако свойства таких клейстеров часто не соответствуют необходимым требованиям; например, нативные кукурузные крахмалы образуют слабые, резинподобные клейстеры и нежелательные гели в процессе термической обработки. Типичным для клейстеров, образованных нативными крахмалами, является также процесс синерезиса - сокращение объема с выделением жидкой фазы в результате самопроизвольного уплотнения структурной сетки.

Различные способы обработки (физические, химические, биологические) нативных крахмалов позволяют существенно изменить их строение, что отражается на растворимости и свойствах клейстеров, например, их устойчивости к нагреванию, воздействию кислот и т. п.

Реакционноспособными  центрами в полимерных молекулах  крахмалов являются: а) гидроксильные группы глюкозных структурных единиц, активность которых по отношению к химическим реагентам изменяется в ряду: ОН при С6 > ОН при С2 > ОН при С3; б) α-гликозидные связи, соединяющие глюкозные структурные единицы в полимерные цепи; в) концевые остатки D-глюкопираноз, обладающие восстанавливающей способностью.

По изменениям, происходящим в нативных крахмалах, можно выделить четыре основных типа модификаций, позволяющих путем физических или химических воздействий получить различные виды модифицированных крахмалов (табл. 7).

Таблица 7

Основные  виды модифицированных крахмалов

Тип модификации

Основные группы

Основные подгруппы

1

2

3

Набухание

Набухающие крахмалы

Растворимые в холодной воде (инстант-крахмалы), полученные:

       - вальцовой  сушкой;

       - экструзией

Набухающие в холодной воде

Деполимеризация

Расщепленные крахмалы

Декстрины

Гидролизованные кислотами

Гидролизованные ферментами

Окисленные

Стабилизация 

Стабилизированные крахмалы

Со сложной эфирной связью:

     - ацетилированные;

     - фосфатные

С простой эфирной связью - оксиалкильные


Окончание табл. 7

 

1

2

3

Поперечное сшивание полимерных цепей

Сшитые крахмалы

Сшитые:

     - хлорокисью  фосфора;

     - эпихлоргидрином;

     - адипиновой  кислотой


 

Набухающие крахмалы. Инстант-крахмалы, т. е. крахмалы, способные растворяться в холодной воде, получают путем физических превращений, не вызывающих существенной деструкции крахмальных молекул. В общем случае их получают нагреванием крахмальной суспензии в условиях, обеспечивающих быструю клейстеризацию и последующее высушивание клейстера, в связи, с чем эти крахмалы называют также преклейстерными. Такие условия достигаются при вальцовой сушке или экструзии.

Инстант-крахмалы используются, например, в пудингах быстрого приготовления.

Крахмалы, набухающие в холодной воде, получают термообработкой нативного кукурузного крахмала в 75 - 90%-м этаноле при температуре 150 -175°С в течение 1,5— 2, 0 ч, или высушиванием крахмальной суспензии в распылительной сушилке.

Основой для получения растворимых и  набухающих крахмалов могут служить  как нативные, так и химически  модифицированные. В последнем случае получаемые набухающие крахмалы сохраняют свойства, достигнутые при химической модификации, например, проявляют устойчивость в кислой среде, стабильность в циклах замерзания и оттаивания.

Способность крахмалов набухать в холодной воде без дополнительного нагревания используют в технологии различных десертов, желейного мармелада, сдобного теста, содержащего ягоды, которые в отсутствие стабилизатора оседают на дно до начала выпечки.

Расщепленные крахмалы. Они представляют собой продукты, имеющие, вследствие физических или химических воздействий, более короткие (по сравнению с нативными крахмалами) молекулярные цепи. К этой группе относятся декстрины, продукты кислотного или ферментативного гидролиза, а также окисленные крахмалы.

Декстрины (Е1400) получают при сухом нагревании нативных крахмалов в присутствии кислотных катализаторов или без них. В зависимости от условий термообработки образуются белые или желтые декстрины.

Гидролизованные крахмалы получают обработкой крахмальных суспензий растворами кислот или гидролитических ферментов амилаз.  Состав и свойства таких крахмалов зависят от условий гидролиза. Основная область использования этих крахмалов - кондитерские изделия: пастила и желе, жевательные резинки. 

Состав  и свойства окисленных крахмалов определяются выбором окислителей, в качестве которых могут использоваться Н2О2, KMnO4, HclO3, KIO и некоторые другие. Как и кислоты, окисляющие агенты приводят к образованию крахмалов с более короткими молекулярными цепями.

Их  используют для стабилизации мороженого, при производстве мармеладов, лукума, а также в хлебопечении. Разбавленные растворы высокоокисленных крахмалов сохраняют прозрачность в течение длительного хранения, что делает их ценными добавками при приготовлении прозрачных супов.

Стабилизированные крахмалы. Они представляют собой продукты химической модификации монофункциональными реагентами с образованием по гидроксильным группам производных с простой или сложной эфирной связью. Такие производные, несмотря на невысокую степень замещения гидроксильных групп (0,002-0,2), отличаются от нативных крахмалов значительно меньшей склонностью к межмолекулярным ассоциациям и получили название стабилизированных.

Сложные эфиры крахмалов получают реакцией этерификации между спиртовыми группами молекул крахмала и ацилирующими или фосфорилирующим и агентами. В качестве ацилирующих агентов обычно используют ангидриды карбоновых кислот.

При получении  эфира крахмала и натриевой соли октенилянтарной кислоты процесс  осуществляют в две стадии. Первоначально  в молекулу янтарной кислоты вводят углеводородный радикал с образованием 1-октенилпроизводного, которое затем взаимодействует с молекулой крахмала, что приводит к образованию моноэфира с низкой степенью замещения гидроксильных групп.

Введение  в молекулу крахмала углеводородных (алкенильных) фрагментов сопровождается возникновением разделенных между собой гидрофобных участков. Вследствие этого такие молекулы становятся поверхностно-активными и приобретают способность, концентрируясь на границах раздела фаз, образовывать, а также стабилизировать (благодаря полимерному строению) различные дисперсные системы, в частности эмульсии.

Простые эфиры крахмалов для пищевых  целей получают взаимодействием нативного крахмала с окисью пропилена до степени замещения гидроксильных групп, соответствующей 0,02—0,2. По своим свойствам гидроксипропилкрахмалы (Е1440) аналогичны ацетилированным модификациям, имеют пониженную температуру гелеобразования, повышенную прозрачность клейстеров, такую же устойчивость к ретроградации.

Сшитые крахмалы. Большинство модифицированных пищевых крахмалов относится к подгруппе сшитых. Поперечное сшивание отдельных крахмальных молекул между собой происходит в результате взаимодействия их гидроксильных групп с бифункциональными реагентами.

Для пищевых  целей используют, главным образом, три вида межмолекулярно-сшитых крахмалов — дикрахмальные эфиры фосфорной и адипиновой кислот, а также дикрахмалглицерины.

В большинстве  сшитых пищевых крахмалов содержится не более одной поперечной связи на каждую тысячу глюкопиранозных остатков, что оказывается достаточным для значительного изменения свойств модифицированных крахмалов но сравнению с исходными. Крахмалы этой подгруппы имеют пониженную скорость набухания и клейстеризации, что создает эффект пролонгированного действия. Клейстеры поперечно-сшитых крахмалов являются более вязкими, имеют «короткую» текстуру, устойчивы к различным внешним воздействиям - высоким температурам, длительному нагреванию, низким рН, механическим нагрузкам.

Устойчивость  к подкислению и физическим воздействиям пропорциональны количеству поперечных связей. 

Благодаря таким свойствам, сшитые крахмалы особенно эффективны, в пищевых технологиях, включающих продолжительную термическую  обработку, интенсивные механические воздействия, а также в технологиях, где требуется пролонгирование процессов набухания крахмальных гранул, повышения вязкости и формирования текстуры. К таким технологиям относятся: получение экструдированных продуктов, консервирование методом стерилизации, различные выпечки (например, выпечка открытых пирогов с фруктовыми начинками), производство консервированных супов и т.п. [1,2,3].

 

3.1.2. Целлюлоза и ее производные

В группу пищевых добавок целлюлозной  природы (Е460—Е467) входят продукты механической и химической модификации и деполимеризации натуральной целлюлозы, представляющей собой линейный полимер, который состоит из соединенных β-1,4-гликозидными связями остатков D-глюкопиранозы.

Наличие β-гликозидной связи приводит на уровне вторичных и третичных структур (конформации полимерных цепей, упаковки цепей в фибриллы) к формированию линейных молекул с зонами кристалличности (высокоориентированными участками), включающими отдельные аморфные (неориентированные) участки. Такое строение обусловливает большую механическую прочность волокон целлюлозы и их инертность по отношению к большинству растворителей и реагентов.

Собственно  целлюлоза используется в качестве пищевой добавки Е460 в двух модификациях:

-  Е460i -  микрокристаллическая целлюлоза (частично гидролизованная кислотой по аморфным участкам, наиболее доступным для атаки реагентами, и затем измельченная; отличается укороченными молекулами);

- Е460ii - порошкообразная целлюлоза, выделенная из растительного сырья (древесины, хлопка и т. п.) удалением сопутствующих веществ (гемицеллюлоз и лигнина) и затем измельченная. Основные технологические функции целлюлозы - эмульгатор и текстуратор, добавка, препятствующая слеживанию и комкованию.

Химическая  модификация молекул целлюлозы  приводит к изменению свойств  и, как следствие, к изменению  функций в пищевых системах. В  образовании производных целлюлозы большую роль играет доступность и реакционная способность гидроксильных групп β-D-глюкопиранозных остатков.

Статус  пищевых добавок имеют семь химических модификаций целлюлозы, представляющих собой моно- или дипроизводные с простой эфирной связью (простые эфиры). В общем виде модифицированные целлюлозы могут быть описаны следующей формулой (строение и технологические функции пищевых эфиров целлюлозы представлены в табл. 8).

Таблица 8

Модифицированные  целлюлозы и их технологические  функции

 

Код

Название

X

Y

Технологические функции

Е461

Метилцеллюлоза 

-CH3

-H

Загуститель, стабилизатор, эмульгатор

Е462

Этилцеллюлоза

-CH2CH3

-H

Наполнитель, связывающий агент

Е463

Гидроксипропилцеллюлоза

- CH2CH(OH) CH3

-H

Загуститель, стабилизатор, эмульгатор

Е464

Гидроксипропилметилцеллюлоза

- CH2CH(OH) CH3

- CH3

Загуститель, стабилизатор, эмульгатор

Е465

Метилэтилцеллюлоза 

- CH3

-CH2CH3

Загуститель, стабилизатор, эмульгатор, пенообразователь

Е466

Карбоксиметилцеллюлоза

(натриевая соль)

- CH2COONa

-H

Загуститель, стабилизатор

Е467

Этилгидроксиэтилцеллюлоза

-CH2CH3

-CH2CH2OH

Загуститель, стабилизатор, эмульгатор


 

Получение простых эфиров включает стадию повышения  ее реакционной способности, поскольку плотная упаковка целлюлозных волокон, в целом, препятствует взаимодействию гидроксильных групп с молекулами реагента. С этой целью целлюлозу подвергают набуханию или переводят в растворимое состояние. В промышленных условиях процесс ведут в гетерофазной среде (дисперсия целлюлозы в ацетоне или изопропиловом спирте), обрабатывая целлюлозу раствором едкого натра при температуре 50 – 140оС с образованием алкалицеллюлозы (процесс мерсеризации).

Пищевые добавки целлюлозной природы  являются безвредными, поскольку не подвергаются в желудочно-кишечном тракте деструкции и выделяются без изменений. Дневной суммарный прием с пищей всех производных целлюлозы может составлять 0 - 25 мг на килограмм массы тела человека. Их дозировки в пищевых продуктах определяются конкретными технологическими задачами.

Информация о работе Лекции по "Пищевым добавкам, используемым в молочной промышленности"