Отчет по практике на нефтеперерабатывающем заводе

Автор работы: Пользователь скрыл имя, 06 Сентября 2013 в 16:48, отчет по практике

Описание работы

Знакомство с протеканием физических и химико-технологических процессов и операций, включающую подготовку сырья, его первичную и вторичную переработку.

Содержание работы

1.Нефтепереработка стр. 3
2.Битумы нефтяные, состав, структура и свойства стр. 7
3.Оператор нефтепереработки стр. 12
4.Транспортировка нефти и нефтепродуктов автотранспортом стр. 13
5. Устройство АСН-100А стр.14

Файлы: 1 файл

отчет по практике.docx

— 111.59 Кб (Скачать файл)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО  ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ 
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ 
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ 
САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ 
Кафедра трубопроводного транспорта

 

 

 

 

 

 

 

 

Отчет о прохождении  ознакомительной практики

 

 

 

 

Выполнил: студент 3-НТ-4

Тагиров Д.Ю.

Проверила: Шабуро И.С.

 

 

 

 

Самара 2012

Содержание.

1.Нефтепереработка                                                                                                               стр. 3

2.Битумы нефтяные, состав, структура и свойства                                                            стр. 7

3.Оператор нефтепереработки                                                                                            стр. 12

4.Транспортировка нефти и нефтепродуктов автотранспортом                                      стр. 13

5. Устройство АСН-100А                                                                                                     стр.14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

НЕФТЕПЕРЕРАБOТКА, крупнотоннажное произ-во, основанное на превращениях нефти, ее фракций и нефтяных газов в товарные нефтепродукты и сырье для нефтехимии, основного органического синтеза и микробиологического синтеза. Это произ-во представляет собой совокупность осуществляемых на нефтеперераб. заводах (НПЗ) физ. и хим.-технол. процессов и операций, включающую подготовку сырья, его первичную и вторичную переработку.

Перед переработкой нефть подвергают спец. п о д г о т о в-к е сначала на нефтепромыслах, а затем непосредственно на НПЗ, где ее освобождают от пластовой воды, минер. солей и мех. примесей (см. Обезвоживание и обессоливание нефти)и стабилизируют, отгоняя гл. обр. пропан-бутановую, а иногда частично и пентановую углеводородные фракции. П е рв и ч н а я п е р е р а б о т к а нефти заключается в разделении ее на фракции, различающиеся пределами выкипания, с помощью первичной (в основном) или вторичной атм. и вакуумной перегонки (см. Дистилляция нефти). Такая переработка позволяет выделять из нефти только изначально присутствующие в ней в-ва. Ассортимент, выход и качество вырабатываемых продуктов полностью определяются хим. составом сырья.

Для увеличения выхода т. наз. светлых нефтепродуктов (фракций, выкипающих до 350 °С,- бензинов, керосинов, газотурбинных, дизельных иреактивных топлив) и улучшения качества фракций и продуктов, полученных при перегонке, широко используется в т о р и ч н а я п е р е р а б о т к анефти. Последняя включает: процессы деструктивной переработки тяжелого и остаточного сырья (см., напр., Висбре-кинг, Гидрокрекинг, Деасфалътизация, Деметаллизация, Каталитический крекинг, Коксование, Термический крекинг); процессы, обеспечивающие повышение качества осн. типов нефтепродуктов-топлив и масел (см. Гидроочистка, Гидро-обессеривание, Каталитический риформинг и др.); процессы переработки нефтяных газов (Газы нефтяные попутные, Газы нефтепереработки), произ-в масел, парафинов, присадок, битумов и иных спец. типовнефтепродуктов, а также нефтехим. и хим. сырья (см., напр., Ароматизация, Газификация нефтяных остатков, Гидродеалкилирование, Депара-финизация, Пиролиз).

Историческая  справка. Переработка нефти с целью ее очистки для уменьшения неприятного запаха при использовании в лечебных целях была известна еще в начале нашей эры. Описания разл. способов перегонки нефти приведены в средневековых иностр. и рус. лечебниках. Впервые нефтепереработка в пром. масштабе была осуществлена в России на заводе, построенном на р. Ухте (1745). В 18-19 вв. в России и др. странах действовали отдельные примитивные НПЗ, на к-рых получали преим. осветит. керосин и смазочные масла. Большой вклад в развитие нефтепереработки внесли рус. ученые и инженеры. Д. И. Менделеев, детально изучив технол. и экономич. проблемы нефтепереработки, предложил строить нефтеперегонные заводы в местах концентрированного потребления нефтепродуктов. А. А. Летний создал основы крекинга и пиролизанефти; под его руководством запроектирован и построен ряд НПЗ. К. В. Харичков предложил способ переработки высокопара-финистых мазутов для послед. использования их в качестве котельного топлива; Л. Г. Гурвич разработал основы очистки нефтепродуктов. В. Г. Шухов изобрел форсунку для сжигания жидкого топлива, что позволило применять не находивший квалифицированных источников потребления мазут как топливо для паровых котлов; кроме того, совместно с С. П. Гавриловым он запатентовал трубчатую нефтеперегонную установку непрерывного действия, техн. принципы к-рой используются в работе совр. установок первичной переработки нефти.

Дальнейшее развитие нефтепереработка получила в 20 в. в связи с появлением автомобильного и авиац. транспорта. Особенно быстрыми темпами происходил рост нефтепереработки после 2-й мировой  войны: производств. мощности, напр., капиталистич. стран с 1947 по 1988 возросли с 416 до 2706 млн. т/год.

Направления и  схемы. Основные совр. тенденции нефтепереработки: укрупнение единичных мощностей технол. установок; комбинирование процессов и снижение их энергоемкости благодаря повышению активности и селективности катализаторов, утилизации отходящей тепловой энергии, оптимизации теплообмена и коэф. избытка воздуха, подаваемого в технол. печи, и т.д.; углубление переработки нефти (см. ниже); улучшение качества товарных нефтепродуктов при ухудшении качества перерабатываемых нефтей; широкое внедрение автоматизации и компьютеризации и др.

К числу гл. факторов, определяющих выбор схемы нефтепереработки, относятся  выход светлых нефтепродуктов и содержание в нефти S. Переработка сернистых и высокосернистых нефтей, содержащих S соотв. 0,5-2,5% и более 2,5% по массе, требует включения в состав НПЗ установокгидроочистки и гидрообессеривания нефтепродуктов.

По назначению НПЗ делятся  на предприятия топливного и топливно-масляного  профилей, а также топливно-масляного  профиля с выпуском нефтехим. Наиб. важная характеристика НПЗ-г л у б и н а п е р е р а б о т к и нефти, к-рая определяется выходом (в расчете на нефть, % по массе) всех светлыхнефтепродуктов или только моторных топлив либо, наоборот, выходом остаточного котельного топлива - мазута. Увеличение глубины переработкинефти, т.е. фактически уменьшение выхода мазута по сравнению с его естеств. содержанием в сырье, м.б. достигнуто с помощью разл. деструктивных процессов. Их уд. вес (отношение суммарной мощности установок к мощности установок первичной переработки нефти) определяет возможности НПЗ и нефтеперераб. пром-сти в целом по обеспечению определенной глубины переработки.

НПЗ  т о п л и в н о г о п р о ф и л я с н е г л у б о к о й п е р ер а б о т к о й н е ф т и. Характерны для районов с высоким потреблением мазута. На этих предприятиях осуществляются технол. процессы: подготовка нефти к переработке; ее атм. перегонка, при к-рой получают бензины, керосины,дизельные топлива и мазут; облагораживание топлив - каталитич. риформинг и изомеризация бензинов (для получения высокооктановых компонентов автомобильных топлив), гидроочистка керосинов и дизельных топлив, гидрообес-серивание мазута (для получения товарных топлив с низким содержанием S). Выход последнего на таких НПЗ может достигать 50% по массе и более; при необходимости часть мазута м.б. направлена на вакуумную перегонку с целью получения остаточных битумов или сырья для произ-ва окисленных битумов.

НПЗ т о п л и в н о г о п р о ф и л я с г л у б о к о й п е р ер а б о т к о й нефти. Предназначены для регионов с низким уровнем потребления мазута. Реализуемые технол. процессы: подготовка нефти к переработке, ее атм. и вакуумная перегонка; деструктивная переработка (каталитич. крекинг игидрокрекинг) тяжелого и остаточного сырья и облагораживание нефтепродуктов (каталитич. риформинг, гидроочистка и др.). Существует большое число деструктивных процессов переработки нефтяных остатков (мазут, гудрон) в светлые нефтепродукты с целью увеличения в них соотношенияводород/углерод по сравнению с исходным сырьем. Они подразделяются на процессы, обеспечивающие снижение содержания углерода (термич. и каталитич. крекинг, коксование, деасфальтизация); процессы, приводящие к возрастанию содержания водорода (разновидности гидрокрекинга). Последние характеризуются повышенными выходом и качеством нефтепродуктов, однако требуют значительно более высоких капиталовложений и эксплуатац. расходов, обусловленных необходимостью проведения процессов при высоких давлениях (15-25 МПа) в атмосфере водорода. Технол. схема переработки остатков может включать один целевой процесс либо комбинацию процессов (напр., гидро-обессеривание мазута-каталитич.крекинг). Выбор схемы определяется техн. и экономии, особенностями функционирования НПЗ. Известны предприятия, на к-рых достигается практически полное превращение нефти в светлые нефтепродукты.

НПЗ т о п л и в н о-м а с л я н о г о п р о ф и л я. На этих предприятиях осуществляются процессы: подготовка к переработке нефти и ее атм.перегонка; вакуумная перегонка мазута, при к-рой получают неск. вакуумных дистиллятов и гудрон. Дистилляты проходят последовательноселективную очистку, депарафинизацию и гидродоочистку либо доочистку H2SO(см. Сернокислотная очистка)или с помощью отбеливающих глин(см. Адсорбционная очистка, Контактная очистка, Перколяциопиая очистка). Гудроны подвергают деасфальтизации, причем образующийся де-асфальтизат обрабатывают по той же схеме, что и дистил-лятные фракции, а остаток (т. наз. концентрат) используют для произ-ва битумов или в качестве сырья для газификации. После доочистки дистиллятные и остаточный компоненты направляют на компаундирование (смешение). Изменяя соотношения компонентов и вводя разл. присадки, получают товарные смазочные масла.

НПЗ т о п л и в  н о-м а с л я н о г  о п р о ф и л я с  в ы п у ск о м н е ф т е х и м и ч е с к о й п р о д у к ц и и. На этих предприятиях в отличие от рассмотренных выше реализованы процессы пиролиза и каталитич. риформинга, обеспечивающие выработку осн. видов нефтехим. сырья (низших олефи-нов и ароматич. углеводородов), а также более или менее длинная цепочка процессов получения разл. нефтехим. продуктов (спиртов, смесей олефинов и др.). Доля нефти, расходуемой в мире на произ-во продукции нефтехимии, в среднем составляет 6%, достигая в Японии 9-11%.

 

 

 

 

 

 

 

2.

Битумы нефтяные, состав, структура и свойства

Нефтяные битумы представляют собой твердые, вязкопластичные или жидкие продукты переработки нефти. По химическому составу битумы — сложные смеси высокомолекулярных углеводородов и их неметаллических производных азота, кислорода и серы, полностью растворимые в сероуглероде. Для исследования битумов их разделяют на основные группы углеводородов (близкие по свойствам) — масла, смолы, асфальтены, асфальтогеновые кислоты и их ангидриды.

Масла — смесь циклических  углеводородов (в основном нафтенового  ряда) светло-желтой окраски с плотностью менее 1 и молекулярной массой 300...500; повышенное содержание масел в битумах  придает им подвижность, текучесть. Количество масел в битумах колеблется в пределах 45...60%.

Смолы — вязкопластичные вещества темно-коричневого цвета с плотностью около 1 и молекулярной массой до 1000. Смолы имеют более сложный состав углеводородов, нежели масла. Они состоят в основном из кислородных гетероциклических соединений нейтрального характера и придают битумам большую тягучесть и эластичность. Содержание смол 15.,30%.

Асфальтены и их модификации (карбены и карбоиды) - твердые, неплавкие вещества с плотностью несколько больше 1 и молекулярной массой 1000...5000 и более. Эта группа углеводородов является существенной составной частью битумов. Повышенное содержание асфальтенов в битуме определяет его высокие вязкость и температурную устойчивость. Общее содержание асфальтенов в различных битумах составляет 5...30% и более.

Карбены и карбоиды встречаются в битумах сравнительно редко в малом количестве (1...2%) и способствуют повышению хрупкости битума.

Асфальтовые кислоты и  их ангидриды — вещества коричневатого  цвета смолистой консистенции с  плотностью более 1. Они относятся  к группе полинафтеновых кислот и  могут быть не только вязкими, но и  твердыми. Асфальтогеновые кислоты являются поверхностно-активной частью битума и способствуют повышению сцепления его с поверхностью минеральных заполнителей. Содержание их в нефтяных битумах составляет около 1 %.

Вышеуказанные группы углеводородов  битума образуют сложную дисперсную систему — коллоидный раствор, в  котором жидкая среда —это масла и раствор смол в маслах, а твердая фаза представлена асфальтенами, на поверхности которых адсорбированы асфальтогеновые кислоты. Масла, смолы и асфальтены входят в состав битумов в различных соотношениях и тем самым предопределяют их структуру. В зависимости от количественного содержания масел, смол и асфальтенов (а также от температуры нагрева) коллоидная структура битума — «гель», «золь», «зольгель» претерпевают изменения от типа «золь» до типа «гель». Структура гель — характерна для твердых битумов при температуре 2О...25°С и обусловливается обычно повышенным содержанием асфальтенов. Структура золь присуща битумам жидкой консистенции с повышенным содержанием смол и масел.

Важнейшими свойствами битумов, характеризующими их качество, являются вязкость, пластичность, температуры  размягчения и хрупкости; кроме  того, следует отметить высокую адгезию, обусловливающую способность битумов  сцеплять в монолит минеральные  зерна заполнителей; они способны также придавать гидрофобные  свойства материалам, обработанным битумом.

Основной характеристикой  структурно-механических свойств битумов  является вязкость, зависящая главным  образом от температуры и группового состава. Вязкость — сопротивление  внутренних слоев битума перемещению  относительно друг друга. Для многих битумов вязкость непостоянна и  уменьшается с увеличением напряжения сдвига или градиента скорости деформации. При повышении температуры вязкость снижается, при ее понижении вязкость быстро возрастает, а при отрицательных  температурах битум становится хрупким. Для измерения структурной вязкости применяют различные приборы, позволяющие  определить вязкость в абсолютных единицах (Па-с) или выразить ее в условных единицах. Для характеристики вязкости, точнее величины обратной вязкости, т.. е. текучести битумов, принимается условный показатель — глубина проникания иглы в битум (пенетрация). Глубину проникания иглы в битум определяют на приборе — пенетрометре при действии на иглу груза массой 100 г в течение 5 с при температуре 25°С или 0°С при грузе 200 г в течение 60 с. Пеиетрация твердых или вязких битумов выражается в единицах (градусах), равных 0,1 мм проникания иглы в битум. Чем больше вязкость, тем меньше проникание иглы в битум.

Информация о работе Отчет по практике на нефтеперерабатывающем заводе