Перспективы развития пероральных лекарственных форм

Автор работы: Пользователь скрыл имя, 27 Февраля 2015 в 12:17, курсовая работа

Описание работы

В области фармацевтической технологии конкретными задачами ее развития являются освоение производства новых и новейших лекарств и технологических процессов, всесторонняя механизация труда в аптеках и комплексная автоматизация фармацевтического производства, совершенствование системы планирования и экономического стимулирования в аптечном хозяйстве и фармацевтической промышленности, широкое применение экономико-математических методов, электронной вычислительной и организационной техники, а также других достижений научно-технической революции.

Файлы: 1 файл

Курсовая работа по заводской технологии.docx

— 55.41 Кб (Скачать файл)

10) предупреждение ошибок  при отпуске и приеме лекарств, достигаемое выпрессовыванием на таблетке надписей.

Наряду с этим таблетки не свободны и от некоторых недостатков:

1) при хранении таблетки  могут терять распадаемость и  цементироваться или, наоборот, разрушаться;

2) с таблетками в организм  вводятся вещества, не имеющие  терапевтической ценности, а иногда  вызывающие некоторые побочные  явления (например, тальк раздражает  слизистую оболочку), но имеется  возможность ограничить их количество;

3) отдельные лекарственные  препараты (например, натрия или  калия бромид) образуют в зоне  растворения высококонцентрированные  растворы, которые могут вызывать  сильное раздражение слизистых  оболочек. Недостаток этого устраним: такие таблетки перед приемом  размельчают и растворяют в  определенном количестве воды;

4) не все больные, особенно  дети, могут свободно проглатывать  таблетки [3].

 

Применение таблеток

Разработка методов нанесения оболочек на таблетки путем прессования, а также использование ряда других технологических принципов, значительно расширили проблему таблетирования и открыли пути для совершенствования таблеток как лекарственной формы и создания новых препаратов пролонгированного действия.

С помощью многослойных таблеток можно добиться пролонгирования действия лекарственного вещества. Очевидно, что вначале окажет действие доза вещества, помещенная в середине таблетки. Если в слоях таблетки будут находиться разные лекарственные вещества, то действие их проявится дифференцированно, последовательно, в порядке растворения слоев.

Перспективны также таблетки с нерастворимым скелетом. Таблетки не распадаются в пищеварительном тракте и сохраняют геометрическую форму. Такие таблетки могут быть получены путем простого прессования лекарственных веществ, образующих скелет. Они могут быть также многослойными, причем лекарственное вещество находится преимущественно в среднем слое. Растворение его начинается с боковой поверхности таблетки, в то время как с больших поверхностей  вначале диффундируют только вспомогательные вещества из среднего слоя через капилляры, образовавшиеся в наружных слоях.

Продление действия лекарственного вещества возможно путем увеличения молекулы лекарственного вещества осаждением его на ионообменной смоле. Вещества, связанные с ионообменной смолой, становятся нерастворимыми и их освобождение  из таблеток в пищеварительном тракте основано исключительно на обмене ионов. Скорость освобождения лекарственного вещества изменяется в зависимости от степени измельчения ионита, а также от количества разветвленных его цепей. Вещества, дающие кислую реакцию, например, производные барбитуровой кислоты, связываются с анионитами, а в таблетках с алкалоидами используются катионы. Таблетки с ионитами поддерживают высокий уровень лекарственного вещества в крови обычно в течение 12 ч [3].

Наночастицы. История возникновения

Современная тенденция к миниатюризации показала, что вещество способен иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы, размерами от 1 до 100 нанометров обычно называют наночастицами.

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Там внизу много места» (англ. «There's Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы, при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма. Последний этап - полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой собирать макровещи. Это позволит сделать вещи на порядок дешевле - таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Принципиальный недостаток такого робота - невозможность создания механизма из одного атома.

В ходе теоретического исследования данной возможности, появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь» или «серая жижа»).

Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге «Opticks» Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать «тайны корпускул».

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: «Машины создания: грядёт эра нанотехнологии» («Engines of Creation: The Coming Era of Nanotechnology») и«Nanosystems: Molecular Machinery, Manufacturing, and Computation». Центральное место в его исследованиях играли математические расчёты, с помощью которых можно было проанализировать работу устройства размерами в несколько нанометров[6].

Классификация нанообъектов

Нанообъекты делятся на 3 основных класса:

- трёхмерные частицы, получаемые  взрывом проводников, плазменным  синтезом, восстановлением тонких  плёнок и т.д;

- двумерные объекты - плёнки, получаемые методами молекулярного наслаивания, CVD, ALD, методом ионного наслаивания и т.д;

- одномерные объекты - вискеры, эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры и т. д.

Также существуют нанокомпозиты - материалы, полученные введением наночастиц в какие либо матрицы. На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, применяется он в электронике; метод CVD и ALD в основном применяется для создания микронных плёнок. Прочие методы в основном используются в научных целях. В особенности следует отметить методы ионного и молекулярного наслаивания, поскольку с их помощью возможно создание реальных монослоёв[6].

Свойства наночастиц

Наиболее сильные изменения свойств наноматериалов и наночастиц наступают в диапазоне размеров кристаллитов порядка 10-100нм. Основные физические причины этого можно проиллюстрировать на рис 1.

Для наночастиц доля атомов, находящихся в тонком поверхностном слое (~ 1 нм), по сравнению с микрочастицами заметно возрастает.

Так, например, оказывается, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дешевы и могут механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров - белками, нуклеиновыми кислотами и др. Тщательно очищенные, наночастицы могут самовыстраиваться в определенные структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства[4,6].

Применение

Нанометровые молекулы могут применяться и в качестве активных веществ. Одним из новых походов является размельчение активных лекарственных веществ до нанометровых размеров – около половины новых активных веществ, которые сейчас находятся в разработке, растворяются плохо, то есть, обладают недостаточной биодоступностью.

Кристаллы активного лекарственного нановещества состоят из активного вещества и производятся в виде суспензии (наносуспензии), которую можно вводить внутривенно, а для перорального приема можно производить из нее гранулы или таблетки. При этом не нужна полимерная матрица, разрушение которой, как считают некоторые ученые, может оказывать токсическое действие на клетки. Обычный размер нанокристаллов составляет 200–600 нм. Одним из нанокристаллических препаратов, внедренных в клиническую практику еще в 2000 году, является Rapamune (Wyeth-Ayers Laboratories) – иммуносупрессивное средство, которое применяют после трансплантации органов. Термотерапия наночастицами, по всей видимости, имеет большую перспективу. Известно, что при попадании ближнего ИК излучения на нанотрубки, последние начинают вибрировать и разогревают вещество вокруг себя. Эффективность такой терапии оказалась весьма велика: у 80 процентов мышей, получившую дозу раствора многослойных нанотрубок, раковые опухоли в почке через некоторое время полностью исчезли. Почти все мыши из этой группы дожили до конца исследования, которое продолжалось около 9 месяцев. Проводятся клинические исследования термотерапии опухолей мозга и рака предстательной железы. Исследователи обнаружили, что контакт нанотрубок с поврежденной костной тканью мышей ускоряет регенерацию костной ткани и понижает вероятность возникновения воспалительных процессов в процессе лечения. Аналогично, частицы нанозолота убивают микробы, распознают и разрушают раковые клетки.

Наночастицы также могут использоваться для стимулирования врождённых механизмов регенерации. Основное внимание здесь сосредоточено на искусственной активации и управлении взрослыми стволовыми клетками. Вот несколько достижений: амфифильные белки, которые поддерживают рост клеток для восстановления поврежденного спинного мозга; покрытия областей опухоли головного мозга из магнитных наночастиц и чувствительных к ферментам частиц; зонды из наночастиц для внутриклеточной доставки препарата и экспрессии генов, квантовые точки, которые обнаруживают и определяют количество биомаркеров рака молочной железы человека.

Наноантитела представляют собой наименьшие из известных на сегодня белковых антиген-узнающих молекул (размером 2-4 нм). Они являются фрагментами (вариабельными доменами) особых однодоменных антител – состоят из димера только одной укороченной тяжелой цепи иммуноглобулина и являются полнофункциональными в отсутствие легкой цепи. После синтеза наноантитела уже функциональны и никаких пострансляционных модификаций не требуют. Это позволяет сразу нарабатывать их в бактериальных клетках или в дрожжах, что делает путь создания данных белков существенно более экономичным. С наноантителами довольно просто проводить всевозможные генно-инженерные манипуляции, например, создавать более эффективные комбинированные конструкции, включающие два или несколько наноантител, а также другие белковые домены или функциональные группы. Такие антитела не существуют в организме человека, и поэтому приспосабливания к ним нет. Таким образом, появляется возможность обойти ухищрения аномальных, патологических клеток и микроорганизмов, которые сумели адаптироваться к иммунной системе человека и нащупать слабое звено в их защите.

Биологически активные добавки (БАД), разработанные с применением нанотехнологий, так называемые наноцевтики (nanoceuticals), нацелены на мощное усиление возможностей организма: отусиления усвояемости активных компонентов пищи и до улучшения умственной деятельности и возможности сконцентрироваться, являются изюминкой современного рынка. Однако, общества по правам потребителей настаивают на более жёстком государственном контроле реальной безопасности и эффективности продуктов, попадающих на прилавки магазинов[6].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

В настоящее время пероральные лекарственные формы занимают значительную часть всего ассортимента лекарственных форм, представленного на современном фармацевтическим рынке. При этом наметилась тенденция к увеличению этой части, что обусловлено многими положительными качествами данной лекарственной формы в сравнении с другими. Ввиду этого пероральные лекарственные формы постоянно совершенствуются и видоизменяются.

Представленная курсовая работа является попыткой краткого обобщения известных данных по развитию изучаемых лекарственных форм.

 

 

 

 

 

 

 

 

 

 

 

 

 

Список литературы

    1. Санарова Е.В. Липосомальные системы доставки лекарственных веществ: свойства и технологические особенности получения / Е.В. Санарова, А.В. Ланцова, Н.А. Оборотова // Биофармацевтический журнал - Москва. – 2014-№4.-С.3-13
    2. Ковалева Е.Л. Стандартизация лекарственной формы «Таблетки» / Е.Л. Ковалева, Л.И. Митькина, Н.В. Заинкова, О.А. Матвеева // Фармация - Москва. -  2010-№7.-С.3-6
    3. Чуешов В.И., «Промышленная технология лекарств», том 2, МТК-Книга, Издательство НФАУ, 2002.-716.с. С.310-414
    4. Интернет: www.farmast.ru
    5. Интернет: www.techlekform – «технология лекарственных форм»
    6. Интернет: www.vechnayamolodost.ru/pages/nanotehnol/navmif2a.html - «медицина и фармацевтика в наномире»

 

 

 


Информация о работе Перспективы развития пероральных лекарственных форм