Процессы брожения и дыхания в технологии пищевых продуктов

Автор работы: Пользователь скрыл имя, 10 Сентября 2015 в 20:35, курсовая работа

Описание работы

Важнейшим параметром пищевых продуктов является их качество, под которым понимают совокупность свойств продукта, обеспечивающих потребности организма человека в пищевых веществах, органолептические характеристики продукта, безопасность его для здоровья потребителя, надёжность в отношении стабильности состава и сохранения потребительских свойств. Основная причина порчи пищевых продуктов и большинства случаев пищевых заболеваний -- это деятельность микроорганизмов. Микробиологическая порча является главной проблемой так называемых «портящихся продуктов» -- свежих фруктов, овощей, мяса, птицы, хлебобулочных изделий, молока и соков

Содержание работы

Введение 3
Литературный обзор 4
Дыхание. Определение. Уравнение. Значение дыхания в жизни растительного организма. 4
Аэробное и анаэробное дыхание 5
Факторы, влияющие на процесс дыхания 5
Брожение 6
Спиртовое брожение 7
Молочнокислое брожение. 10
Пропионово-кислое брожение 12
Практическая часть 14
Заключение 16
Список литературы 17

Файлы: 1 файл

процессы брожения и дыхания в пищевых продуктах.doc

— 177.50 Кб (Скачать файл)

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА

РОССИЙСКОЙ ФЕДЕРАЦИИ

 

ФГОУ ВПО ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ

АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ ИМПЕРАТОРА ПЕТРА I

 

КАФЕДРА БОТАНИКИ, ЗАЩИТЫ РАСТЕНИЙ, БИОХИМИИ И МКРОБИОЛОГИИ

 

 

 

Курсовая работа

на тему «Процессы брожения и дыхания в технологии пищевых продуктов»

 

 

 

Выполнил студент ФТТ-2-3

Пономарева Ю.Н.

Проверил:

профессор Лукин А.Л.

 

 

Воронеж

2014

 

Содержание

 

Введение

Жизнь организма в целом, как и каждое проявление жизнедеятельности, необходимо связаны с расходованием энергии. Клеточное деление, рост, развитие и размножение, поглощение и передвижение воды и питательных веществ, разнообразные синтезы и все другие процессы и функции осуществимы лишь при постоянном удовлетворении обусловленных ими потребностей в энергии и пластических веществах, которые служат клетке строительным материалом.

 

Брожение, как и дыхание,— это процесс, обратный ассимиляции солнечной энергии. Он связан с освобождением из углеводов энергии фотонов солнца.

 

Необходимую для жизнедеятельности энергию высшие животные и растения получают при дыхании, а многие микроорганизмы, в том числе и дрожи,- при брожении. Таким образом, дыхание и брожение являются основными формами важнейшего жизненного процесса – диссимиляции - расщепления усвоенной ранее энергии.

 

 

Литературный обзор

Дыхание. Определение. Уравнение. Значение дыхания в жизни растительного организма.

Дыхание — процесс универсальный. Оно является неотъемлемым свойством всех организмов, населяющих нашу планету, и присуще любому органу, любой ткани, каждой клетке, которые дышат на протяжении всей своей жизнедеятельности. Дыхание всегда связано с жизнью, тогда как прекращение дыхания — с гибелью живого.  

Источником энергии для живой клетки служит химическая (свободная) энергия потребляемых ею питательных веществ. Распад этих веществ, происходящий в акте дыхания, сопровождается освобождением энергии, которая и обеспечивает удовлетворение жизненных потребностей организма.

Сам же процесс дыхания представляет собой сложную многозвенную систему сопряженных окислительно-восстановительных процессов, в ходе которых имеет место изменение химической природы органических соединений и использование содержащейся в них энергии.

Клеточное дыхание — это окислительный, с участием кислорода распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности.

 

Суммарное уравнение дыхания: С6Н12О6 + 6О2 ® 6СО2 + 6Н2О.

 

Данная формула характеризует начальный и конечный момент процесса дыхания. В действительности этот процесс многоступенчатый. Он состоит из целого ряда последовательно идущих окислительно-восстановительных реакций.

В качестве органических веществ, необходимых для дыхания, служат в основном углеводы, белки и жиры. Типичным соединением, окисляемым в процессе дыхания, является глюкоза. Энергетически наиболее выгодным для дыхания веществом является жир. 1 г жира при окислении до СО2 и Н2О дает 9,2 ккал, белки — 5,7 ккал, углеводы — 4 ккал. Процесс превращения исходного органического вещества до более простых и затем до СО2 и Н2О требует большого числа различных ферментов.

О характере протекания дыхания судят по дыхательному коэффициенту – отношению объемов выделяемого углекислого газа и поглощаемого кислорода. Если процесс аэробного дыхания происходит в точном соответствии с приведенным уравнением, то дыхательный коэффициент равняется 1.

При прорастании масличных семян, когда происходит окисление жирных кислот, бедных кислородом, и превращение жира в сахар, дыхательный коэффициент значительно меньше 1.

Высокие дыхательные коэффициенты наблюдаются при использовании на дыхание соединений, более богатых кислородом, чем сахар, например органических кислот (щавелевой, винной и др.).

 

 

Аэробное и анаэробное дыхание

Дыхание за счет кислорода воздуха называется аэробным. При отсутствии кислорода воздуха живой организм (зеленое растение, животное) не сразу умирает.

Некоторое время он живет за счет кислорода, получаемого от воды и органических веществ, имеющихся в организме. Такое дыхание называется анаэробным (бескислородным). При нем органическое вещество разлагается не до СО2 и Н2О, а лишь до спирта и углекислоты. Поэтому энергии выделяется значительно меньше. Анаэробное дыхание  протекает по следующей суммарной формуле:

С6Н12О6 ® 2С2Н5ОН + 2СО2 + 24 ккал.

Две молекулы спирта содержат потенциальную энергию, равную  
650 ккал. Малое количество энергии, получаемое от анаэробного дыхания, не дает возможности организму долго существовать, и он вскоре умирает. Напомним, что энергия организму нужна для всех жизненных процессов — роста, движения, размножения, передвижения веществ и т. д.

При аэробном (или нормальном) дыхании при окислении одной молекулы глюкозы выделяется 686 ккал, т. е. в 27 раз больше, чем в тех же условиях при анаэробном дыхании.

Факторы, влияющие на процесс дыхания

Важным фактором, влияющим на интенсивность дыхания, является температура. В определенном интервале температур возрастание интенсивности дыхания растительных объектов подчиняется правилу Вант-Гоффа: повышение температуры на 10 °С увеличивает интенсивность дыхания продукта в 2–3 раза.

На интенсивность дыхания также большое влияние оказывает газовый состав воздуха. Повышение концентрации углекислого газа и понижение кислорода сильно тормозят дыхание растительных продуктов. При понижении количества кислорода в окружающей среде до 2% и менее, а также при повышении концентрации углекислого газа в растительных объектах вместо аэробного начинается анаэробное дыхание, являющееся по существу процессом брожения. Анаэробное дыхание сопровождается накоплением ацетальдегида, спирта, которые губительно действуют на растительные ткани. Однако газовые смеси, содержащие кислород и углекислый газ в количествах 3–5% и азот в количестве 90–94%, благоприятны для хранения некоторых видов плодов и овощей. Такое хранение называется хранением в регулируемой или модифицированной газовой среде. В этих условиях происходит торможение процессов жизнедеятельности (созревания и перезревания), что позволяет значительно удлинять сроки их хранения с минимальными потерями органических веществ на процесс дыхания.

Процесс дыхания сопровождается потерей массы растительного объекта, изменением состава окружающей атмосферы, выделением влаги и тепла.

Потери массы при дыхании растительных продуктов могут достигать значительных размеров. Они особенно велики у хранящихся плодов и овощей. Выделяющиеся при дыхании тепло и влага могут быть причиной дальнейшего усиления процесса дыхания. Это происходит в том случае, когда хранящиеся объекты плохо проветриваются, для удаления накапливающейся в них влаги и понижения их температуры.

Процесс дыхания у растительных продуктов различного происхождения неодинаков. Он определяется количеством выделенного углекислого газа или поглощаемого кислорода в единицу времени единицей массы. Слабая интенсивность дыхания характерна для сухого зерна, значительно выше она у сочных плодов и овощей. Особенно возрастает интенсивность дыхания при механических повреждениях и микробиологических заболеваниях объектов.

Расходование на дыхание сахаров и других органических веществ (кислот, белков, жиров) приводит к потере сухого вещества продукта. Образующиеся спирт и углекислый газ губительно действуют на живые клетки продукта, вода может способствовать увлажнению продукта, а тепло – его согреванию (самосогреванию).

Брожение

Брожение- окислительно-восстановительный процесс, приводящий к образованию АТФ, в котором окислителем и восстановителем служат органические соединения, образующиеся в ходе самого брожения.

При брожении субстрат разлагается до конечных продуктов, причем суммарная степень окисления продуктов та же, что и степень окисления сбраживаемых веществ. Необходимость точного окислительно-восстановительного равновесия обуславливает ограничение соединений, которые могут подвергаться брожению: такие соединения не должны быть, ни слишком сильно восстановленными, ни слишком окисленными.

Брожение схематично можно представить в виде две стадии.

Первая стадия- превращение глюкозы в пируват- включает разрыв углеродной цепи глюкозы и отщепление двух пар атомов водорода. Данная стадия составляет окислительную часть брожения и может быть изображена следующим образом:

С6Н12О6→ 2СН3СОСООН+[4H]

На второй, восстановительной, стадии атомы водорода используется для восстановления пирувата или образованных из него соединений. Например, при молочно кислом брожении пируват восстанавливается в лактат:

2СН3СОСООН+[4H]→2CH3CHOHCOOH

Спиртовое брожение

Спиртовое брожение- это процесс превращения в анаэробных условиях сахара в диоксид углерода и этиловый спирт:

С6 Н12О 6 → 2СО2 +2С2 Н5 ОН

Этиловый спирт - один из широко распространённых продуктов сбраживания сахаров микроорганизмами. Даже растения и грибы в анаэробных условиях накапливают этиловый спирт.

Возбудителями спиртового брожения являются дрожжи, которые выращивают в анаэробных условиях, подбирая соответствующие расы, обладающие необходимыми свойствами для данного производства. В результате химической реакции образуется уксусный альдегид и СО2

С02 является одним из конечных продуктов спиртового брожения. Уксусный альдегид играет роль конечного акцептора водорода. Он при участии фермента алкогольдегидрогеназы восстанавливается в этиловый спирт, а НАД Н2 регенерируется (окисляется) в НАД.

Наряду с основным продуктом (этиловым спиртом) в небольшом количестве образуются побочные продукты - глицерин, уксусный альдегид, сивушные масла. Высшие спирты участвуют в формировании аромата и вкуса напитков спиртового брожения

На условия спиртового брожения влияют многие факторы: химический состав сбраживаемой среды, содержание спирта, температура, наличие посторонних микроорганизмов.

Большинство дрожжей способны сбраживать моносахариды, а из дисахаридов - сахарозу и мальтозу. Пентозы сбраживаются только некоторыми дрожжами. Дрожжи не могут сбраживать крахмал, так как они не образуют амилолитических ферментов.

Наиболее благоприятная концентрация сахара-10-15%, при 30-35% брожение прекращается. Энергией брожения называется способность определённого количества дрожжей сбраживать за определённый промежуток времени то или иное количество сахара.

Наибольшая скорость брожения наблюдается при температуре около 30°С; при температуре 45-50°C брожение прекращается в результате гибели клеток дрожжей. Снижение температуры приводит к замедлению брожения, но полностью оно не прекращается даже при температуре ниже 0°C.

Использование спиртового брожения лежит в основе производства этилового спирта, пива, вина и пекарских дрожжей.

В производстве спирта используют спиртоустойчивые расы дрожжей (до 18-20% спирта). В хлебопечении используют прессованные, сухие, а также жидкие дрожжи. Хлебопекарные дрожжи должны обладать мальтазной активностью и образовывать большое количество С02.

В производстве этилового спирта для пищевых целей используют разное сырьё трёх основных групп: содержащее сахар ( сахарная свекла, кормовая патока, или меласса, сахарный тростник, фруктовые соки); содержащее крахмал ( картофель, земляная груша, кукуруза, ячмень, овёс, рожь, пшеница); содержащее целлюлозу( древесина и сульфитные щелока).

В зерновом и грибном солоде кроме амилаз содержатся протеолитические ферменты, вызывающие частичное превращение белков затора в растворимые азотосодержащие вещества. В результате получается жидкий сахаристый субстрат - сусло.

В полученное сусло вносят дрожжи, чаще всего применяют расы Saccharomyces cerevisiae, которые обладают высокой энергией брожения.

По окончании брожения дрожжи отделяют от сброженных заторов, а спирт отгоняют на специальных перегонных аппаратах. Получается спирт-сырец и остаётся отход производства - барда, которую используют для получения кормовых дрожжей.

Спирт-сырец используют как для технических целей, так и для дальнейшей очистки - ретефикации.

Микроорганизмы в спирт-сырец могут попадать из воздуха, сырья, аппаратуры. Ими могут быть молочнокислые бактерии и дикие дрожжи, которые способны развиваться в анаэробных условиях в присутствии спирта. Они используют питательные вещества среды, угнетают дрожжи продуктами своего обмена, при этом снижается выход спирта.

Спирт применяют  медицине, производстве различных спиртовых напитков. В последнее десятилетие спирт рассматривают  как перспективное топливо. Спирт является сырьем для химической промышленности. С уменьшением запасов нефти (полагают многие ученые) на смену нефтехимии придет алкохимия (химия биоэтанола)

Для получения технического спирта используют гидролизаты древесины и другие отходы целлюлозно-бумажной промышленности. В настоящее время технический спирт получают также синтетическим путем - из побочных продуктов переработки нефти (этилена).

Информация о работе Процессы брожения и дыхания в технологии пищевых продуктов