Разработка технологии лазерной сварки судовых микропанелей

Автор работы: Пользователь скрыл имя, 14 Марта 2014 в 17:18, дипломная работа

Описание работы

В данном дипломном проекте представлена технология двухлучевой лазерной сварки микропанелей судов. Данная тема рассмотрена на примере изготовления типовой микропанели из стали марки Ст3сп класса А с толщиной полотнища 16 мм и ребрами жесткости толщиной 8 мм. Рассмотрен вопрос особенности лазерной сварки низкоуглеродистых и низколегированных сталей, установлены режимы двухлучевой лазерной сварки стали типовой микропанели. Выявлены основные дефекты при лазерной сварке и установлены причины их возникновения. Проведен технико-экономический анализ изготовления микропанелей с использованием технологии двухлучевой лазерной сварки.

Содержание работы

1. ВВЕДЕНИЕ 6
2. ОПИСАНИЕ МАТЕРИАЛА И ИЗДЕЛИЙ. 8
2.1. Конструкция изделий. 8
2.2. Классификация и свойства материала. 9
3. ВЫБОР И ОБОСНОВАНИЕ СПОСОБА СВАРКИ. 12
3.1 Краткий обзор традиционных способов сварки низкоуглеродистых конструкционных сталей. 12
3.1.1 Общие сведения о свариваемости 12
3.1.2 Ручная дуговая сварка низкоуглеродистых сталей. 13
3.1.3 Сварка в защитных газах. 15
3.1.4 Сварка под флюсом. 17
3.1.5 Оценка традиционных способов сварки. 20
3.2 Описание технологии двухлучевой лазерной сварки 20
3.2.1 Использование лазеров в промышленности 20
3.2.2 Комбинированные и гибридные технологии лазерной сварки 21
3.2.3 Оценка способов лазерной сварки. 34
3.3 Качественное и экономическое сравнение двухлучевой сварки и традиционных способов сварки. 35
3.3.1 Качественное сравнение 35
3.3.2 Экономическое сравнение 37
3.3.3 Итог сравнения 39
4. ОБОРУДОВАНИЕ ДЛЯ ЛАЗЕРНОЙ СВАРКИ МИКРОПАНЕЛЕЙ. 40
4.1 Манипулятор для установки и прихватки набора 43
4.2 Робот для сварки микропанелей с фотограммометрическим сенсором 45
4.3 Источники лазерного излучения. 48
4.4 Оптическая лазерная головка. 52
4.5. Чиллер. 54
5. ТЕХНОЛОГИЯ ДВУХЛУЧЕВОЙ ЛАЗЕРНОЙ СВАРКИ МИКРОПАНЕЛЕЙ НА ЛАЗЕРНОМ ТЕХНОЛОГИЧЕСКОМ КОМПЛЕКСЕ С ВОЛОКОННЫМИ ЛАЗЕРАМИ ЛС-3 И ЛС-8. 56
5.1 Подготовка деталей. 56
5.2. Сборка микропанелей. 56
5.2.1 Общие указания. 56
5.2.2 Технология сборки типовой микропанели. 58
5.3 Сварка микропанелей. 58
5.3.1 Общие указания. 58
5.3.2 Технология сварки типовой микропанели. 58
5.4. Возможные дефекты сварных швов. 61
5.5. Контроль качества сварных соединений. 63
5.6. Предлагаемая технология. 65
5.7. Организация поточного производства. План выпуска. 65
6. ОХРАНА ТРУДА. 69
6.1. Требования безопасности. 69
6.2. Оказание первой помощи при поражение лазерным излучением. 72
6.3. Расчет месной вытяжной вентиляции. 74
7. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ. 79
7.1. Введение 79
7.2. Расчет затрат при изготовлении микропанелей традиционным способом 80
7.3. Расчет затрат при изготовлении микропанелей на линиях с применением лазерных технологий. 82
8. ЗАКЛЮЧЕНИЕ 86
9. СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ. 87

Файлы: 1 файл

диплом Жмуренков.docx

— 3.47 Мб (Скачать файл)

Электрод состоит из электродного стержня и электродного покрытия. Электродный стержень – сварочная проволока; электродное покрытие – многокомпонентная смесь металлов и их оксидов.

Электроды выбирают в зависимости от назначения конструкций и типа стали, а режим сварки — в зависимости от толщины металла, типа сварного соединения и пространственного положения сварки.

Рекомендуемые для электрода данной марки значения сварочного тока, его род и полярность выбирают согласно паспорту электрода, в котором приводят его сварочно-технологические свойства, типичный химический состав шва и механические свойства. При сварке рассматриваемых сталей обеспечиваются высокие механические свойства сварного соединения и поэтому в большинстве случаев не требуются специальные меры, направленные на предотвращение образования в нем закалочных структур.

Техника заполнения швов и определяемый ею термический цикл сварки зависят от предварительной термической обработки стали. Сварка толстого металла каскадом и горкой, замедляя скорость охлаждения металла шва и околошовной зоны, предупреждает образование в них закалочных структур. Это же достигается при предварительном подогреве до 150—200 0С. Поэтому эти способы дают благоприятные результаты на нетермоупрочненных сталях. При сварке термоупрочненных сталей для уменьшения разупрочнения стали в околошовной зоне рекомендуется сварка длинными швами по охлажденным предыдущим швам. Следует выбирать режимы сварки с малой погонной энергией. При этом достигается и уменьшение протяженности зоны разупрочненного металла в околошовной зоне. При исправлении дефектов в сварных швах на низколегированных и низкоуглеродистых сталях повышенной толщины швами малого сечения вследствие значительной скорости остывания металл подварочного шва и его околошовная зона обладают пониженными пластическими свойствами. Поэтому подварку дефектных участков следует производить швами нормального сечения длиной не менее 100 мм или предварительно подогревать их до 150—200 0С.

Достоинства способа:

  • Простота оборудования;
  • Возможность сварки во всех пространственных положениях;
  • Возможность сварки в труднодоступных местах;
  • Быстрый, по времени переход от одного вида материала к другому;
  • Большая номенклатура свариваемых металлов.

Недостатки способа:

  • Большие материальные и временные затраты на подготовку сварщика;
  • Качество сварного соединения и его свойства во многом определяются субъективным фактором;
  • Низкая производительность (пропорциональна сварочному току, увеличение сварочного тока приводит к разрушению электродного покрытия);
  • Вредные и тяжёлые условия труда.

Рациональные области применения:

  • Сварка на монтаже;
  • Сварка непротяжённых швов.

3.1.3 Сварка в защитных газах.

При сварке низкоуглеродистых и низколегированных сталей для защиты расплавленного электродного металла и металла сварочной ванны используют углекислый газ. В качестве защитных находят применение и смеси углекислого газа с аргоном или кислородом до 30%. Аргон и гелий в качестве защитных газов применяют только при сварке конструкций ответственного назначения. Сварку в углекислом газе выполняют как правило плавящимся электродом.

При автоматической и полуавтоматической сварке плавящимся электродом швов, расположенных в различных пространственных положениях, используют электродную проволоку диаметром до 1,2 мм, а при сварке швов, расположенных в нижнем положении — проволоку диаметром 1,2—3,0 мм.

Таблица 5. Проволока для сварки в углекислом газе низкоуглеродистых и низколегированных сталей

Свариваемая сталь

Сварочная проволока

Ст1, Ст2, Ст3

Св-08ГС, Св-08Г2С, Св-12ГС

10ХСНД, 15ХСНД, 14ХГС, 09Г2С

Св-08Г2С, Св-08ХГ2С


Структура и свойства металла швов и околошовной зоны на низкоуглеродистых и низколегированных сталях зависят от использованной электродной проволоки, состава и свойств основного металла и режима сварки (термического цикла сварки, доли участия основного металла в формировании шва и формы шва). Влияние этих условий и технологические рекомендации примерно такие же, как и при ручной дуговой сварке и сварке под флюсом.

На свойства металла шва влияет качество углекислого газа. При повышенном содержании азота и водорода, а также влаги в газе в швах могут образовываться поры. При сварке в углекислом газе влияние ржавчины незначительно. Увеличение напряжения дуги, повышая, угар легирующих элементов, ухудшает механические свойства шва.

Достоинства способа:

  • Повышенная производительность (по сравнению с дуговой сваркой покрытыми электродами);
  • Отсутствуют потери на огарки, устранены затраты времени на смену электродов;
  • Надёжная защита зоны сварки;
  • Минимальная чувствительность к образованию оксидов;
  • Отсутствие шлаковой корки;
  • Возможность сварки во всех пространственных положениях.

Недостатки способа:

  • Большие потери электродного металла на угар и разбрызгивание (на угар элементов 5-7%, при разбрызгивании от 10 до 30%);
  • Мощное излучение дуги;
  • Ограничение по сварочному току;

Области применения:

  • Сварка тонколистового металла и металла средних толщин (до 20мм);
  • Возможность сварки сталей всех классов, цветных металлов и сплавов, разнородных металлов.

 

3.1.4 Сварка под флюсом.

Автоматическую сварку выполняют электродной проволокой диаметром 3—5 мм, полуавтоматическую — диаметром 1,2—2 мм. Равнопрочность соединения достигается подбором флюсов и сварочных проволок и выбором режимов и техники сварки. При сварке низкоуглеродистых сталей в большинстве случаев применяют флюсы АН-348-А и ОСЦ-45 и низкоуглеродистые электродные проволоки Св-08 и Св-08А. При сварке ответственных конструкций, а также ржавого металла рекомендуется использовать электродную проволоку Св-08ГА. Использование указанных материалов позволяет получить металл шва с механическими свойствами, равными или превышающими механические свойства основного металла. При сварке низколегированных сталей используют те же флюсы и электродные проволоки Св-08ГА, Св-10Г2 и др. Легирование металла шва марганцем из проволок и кремнием при проваре основного металла, при подборе соответствующего термического цикла (погонной энергии) позволяет получить металл шва с требуемыми механическими свойствами. Использованием указанных материалов достигается высокая стойкость металла швов против образования пор и кристаллизационных трещин. При сварке без разделки кромок увеличение доли основного металла в металле шва и поэтому некоторое повышение в нем углерода может повысить прочностные свойства и понизить пластические свойства металла шва.

Режимы сварки низкоуглеродистых и низколегированных сталей различаются незначительно и зависят от конструкции соединения, типа шва и техники сварки. Свойства металла околошовной зоны зависят от термического цикла сварки. При сварке угловых однослойных швов и стыковых и угловых швов на толстой стали типа ВСтЗ на режимах с малой погонной энергией в околошовной зоне возможно образование закалочных структур с пониженной пластичностью.

Предупреждение: этого достигается увеличением сечения швов или применением двухдуговой сварки.

При сварке низколегированных термоупрочненных для предупреждения разупрочнения шва в зоне термического влияния следует использовать режимы с малой погонной энергией, а при сварке не термоупрочненных сталей — режимы с повышенной погонной энергией. Для обеспечения пластических свойств металла шва и околошовной зоны на уровне свойств основного металла во втором случае следует выбирать режимы, обеспечивающие получение швов повышенного сечения, применять двухдуговую сварку или производить предварительный подогрев металла до 150—200 0С.

 

Достоинства способа:

  • Повышенная производительность;
  • Минимальные потери электродного металла (не более 2%);
  • Отсутствие брызг;
  • Максимально надёжная защита зоны сварки;
  • Минимальная чувствительность к образованию оксидов;
  • Мелкочешуйчатая поверхность металла шва в связи с высокой стабильностью процесса горения дуги;
  • Не требуется защитных приспособлений от светового излучения, поскольку дуга горит под слоем флюса;
  • Низкая скорость охлаждения металла обеспечивает высокие показатели механических свойств металла шва;
  • Малые затраты на подготовку кадров;
  • Отсутствует влияние субъективного фактора.

Недостатки способа:

  • Трудозатраты с производством, хранением и подготовкой сварочных флюсов;
  • Трудности корректировки положения дуги относительно кромок свариваемого изделия;
  • Нет возможности выполнять сварку во всех пространственных положениях без специального оборудования.

Области применения:

  • Сварка в цеховых и монтажных условиях
  • Сварка протяженных швов
  • Сварка металлов от 1,5 до 150 мм и более;
  • Сварка всех металлов и сплавов, разнородных металлов.

 

3.1.5 Оценка традиционных способов сварки.

Таким образом, оценивая одни из самых распространенных способов сварки низкоуглеродистых и низколегированных сталей и опираясь на опыт судостроительных предприятий, приходим к выводу, что микропанели, исходя из производительности и качества, при протяженных швах целесообразнее всего сваривать автоматической сваркой под слоем флюса, при непротяженных – сваркой в защитных газах. Ручная дуговая сварка покрытым электродом применяются редко, в основном для сборки конструкции.

 

3.2 Описание технологии двухлучевой лазерной сварки

3.2.1 Использование лазеров в промышленности

Бурное развитие квантовой электроники в последние десятилетия привело к созданию принципиально новых источников энергии - лазеров. Лазер представляет собой генератор электромагнитных волн в диапазоне ультрафиолетового, видимого, инфракрасного излучений, характеризующихся высокой степенью монохроматичности и высокой когерентностью [3]. Благодаря указанным свойствам и особенностям лазерного излучения создаются качественно новые возможности обработки материалов, в том числе сварки.

Основными преимуществами лазерной сварки считают [2]:

    • обеспечение высокой плотности мощности в зоне действия сфокусированного  лазерного  излучения, чем достигаются минимальные размеры сварного шва и низкая энергоемкость процесса;
    • минимальная деформация свариваемых изделий в связи с малыми тепловложениями;
    • достижение высокой скорости сварки;
    • возможность сварки разнородных сталей, в том числе с пониженной свариваемостью;
    • выполнение сварочных операций в труднодоступных местах, в том числе на значительных расстояниях от источника излучения (лазерный луч не рассеивается в воздухе и эффективно транспортируется);
    • возможность использования одной лазерной установки для выполнения нескольких сварочных операций.

Указанные преимущества лазерной сварки определяют активный поиск областей применения данной технологии как за рубежом, так и в России. В России уже отработаны технологии поточной лазерной сварки для сварки кузовов автомобилей, шестерён, труб для пищевой промышленности и др.

Информация о работе Разработка технологии лазерной сварки судовых микропанелей