Развитие методов и аппаратуры для защиты от перенапряжений

Автор работы: Пользователь скрыл имя, 05 Октября 2013 в 16:09, реферат

Описание работы

Габариты, стоимость и надежность высоковольтного электрооборудования в линиях электропередачи в значительной степени зависят от уровня изоляции, который устанавливается и контролируется испытательными напряжениями в соответствии с ГОСТ 1516.1-76. При выборе испытательных напряжений исходят из того, что высоковольтные аппараты, находясь неограниченно долго под наибольшим рабочим напряжением промышленной частоты, должны выдерживать ограниченные по времени воздействия повышенных напряжений промышленной частоты и воздействия импульсных перенапряжений (коммутационных длительностью порядка нескольких миллисекунд и грозовых длительностью порядка 10—100 мкс).

Файлы: 1 файл

Реферат.docx

— 66.28 Кб (Скачать файл)

При разработке норм для  электрооборудования напряжением 330 кП и выше начальная стадия координации изоляции состояла в исследовании технических возможностей ограничения перенапряжений на основе совершенствования схем и методов защиты, а также возможностей создания электрооборудования с требуемыми параметрами, в определении размеров воздушных промежутков, необходимых при том или другом выдерживаемом напряжении.

Перенапряжения, воздействующие на зажимы электрооборудования, определяются защитным уровнем вентильных разрядников. При разработке ГОСТ 1516-(60, 68) в качестве защитного уровня принимались защитные характеристики стандартных грозовых вентильных разрядников — их остающееся импульсное напряжение и пробивное напряжение частотой 50 Гц.

При введении в ГОСТ 1516.1-76 для электрооборудования СВН испытания коммутационным импульсом значение испытательного напряжения этого импульса определялось защитным уровнем при воздействии внутренних перенапряжений и пробивным или остающимся напряжением на защитном устройстве (разряднике или ограничителе перенапряжений) при токе координации.

Используемое для координации  изоляции остающееся напряжение представляет собой амплитуду напряжения, возникающую на зажимах разрядника при приложении к нему определенного импульсного тока. Амплитуда этого импульса выбрана с учетом возможных перенапряжений на линии электропередачи данного напряжения, условий набегания импульсных волн на подстанцию. Например, для ряда классов высокого напряжения в качестве защитного импульсного уровня при грозовых перенапряжениях принято остающееся напряжение при импульсе тока с амплитудой 5 кА (10/20 мкс), а для классов СВП — до 10 кА. Защитный уровень ограничителей перенапряжений был принят равным 1.85Uнр/√3, где Uнр — наибольшее рабочее линейное напряжение.

Грозовые перенапряжения на зажимах электрооборудования превышают остающееся напряжение разрядника из-за удаления его от электрооборудования. На остающееся напряжение накладываются обусловленные этим удалением колебания, как правило, значительные. В соответствии с этим основой для определения необходимого уровня изоляции электрооборудования, скоординированного е атмосферными перенапряжениями, являются расчетные перенапряжения, амплитуда которых выше остающегося напряжения разрядника. Грозовые расчетные перенапряжения принимаются многократно воздействующими на изоляцию электрооборудования и условно представляются в виде стандартных полной и срезанной импульсных волн. Амплитуда первой на 10 % или несколько больше превышает остающееся напряжение при импульсном токе, принятом при координации изоляции; амплитуда расчетной срезанной волны на 20—25 % больше, чем полной.

При срабатывании вентильного  разрядника крутого среза импульса не происходит. Принятие в качестве расчетного воздействия не только полной, но также срезанной импульсной волны вызвано необходимостью учитывать возможность крутого среза волн грозовых перенапряжений на случайно ослабленном элементе изоляции подстанции, а также в случае применения трубчатых разрядников или простых защитных искровых промежутков. При срабатывании этих защитных устройств происходит крутой срез напряжения. Учтено также, что изменение напряжения, столь же быстрое, как при крутом срезе импульсов, происходит при повторном зажигании дуги в выключателях.

Включение срезанной волны  с крутым спадом напряжения в число расчетных воздействий имеет большое значение для внутренней изоляции трансформаторов (силовых и напряжения) и реакторов. При крутом срезе импульса между элементами обмоток трансформаторов и катушками реакторов могут возникнуть значительно более сильные воздействия, чем при полной волне той же амплитуды. Стойкость изоляции между указанными элементами обмотки по отношению к крутым срезам в эксплуатации может быть проверена только проведением испытания срезанной волной. В ГОСТ 1516.3-96 испытание срезанным грозовым импульсом нормировано только для электрооборудования с обмотками.

Уровень изоляции электрооборудования, стандартизованный в ГОСТ 1516, —  это нормированные испытательные напряжения коммутационных импульсов (для электрооборудования напряжением 330 кВ и выше), грозовых импульсов и кратковременное напряжение промышленной частоты, отнесенные к определенным условиям испытания.

Основой для нормирования испытательных напряжений является требование о том, чтобы данное электрооборудование  в целом (все элементы его внутренней и внешней изоляции) в эксплуатационных условиях выдерживало грозовые и внутренние перенапряжения, принятые для электрооборудования в качестве расчетных воздействий на его зажимах. Испытательные напряжения выбираются как эквивалент этим перенапряжениям с учетом свойств внутренней и внешней изоляции, обусловливающих различие ее прочности в нормальных условиях испытания и в эксплуатации. При установлении испытательных напряжений внутренней изоляции учитывается снижение ее электрической прочности при перенапряжениях в условиях эксплуатации по сравнению с прочностью при типовом испытании наработавшей изоляции. Для трансформаторов (силовых и напряжения) и реакторов (шунтирующих и заземляющих) принимается во внимание повышение перенапряжений на элементах изоляции обмоток при воздействии импульсов в эксплуатации на возбужденный трансформатор или реактор по сравнению с перенапряжениями при отсутствии возбуждения трансформатора во время проведения импульсного испытания. Для внешней (воздушной) изоляции учитывается снижение разрядных (выдерживаемых) напряжений при атмосферных условиях, возможных в эксплуатации.

Учет перечисленных факторов приводит к выбору неодинаковых испытательных  напряжений для внутренней и внешней изоляции данного вида электрооборудования. При этом обеспечивается выдерживание всеми элементами его изоляции перенапряжений принятого расчетного уровня в эксплуатационных условиях, наиболее тяжелых для каждого вида изоляции. В одних и тех же возможных условиях данный элемент изоляции может иметь более высокое напряжение пробоя или перекрытия, чем другой; в других условиях соотношение электрической прочности может быть обратным.

Создание сетей СВН  связано с необходимостью ограничения уровней перенапряжений по мере роста номинального напряжения сети, что в первую очередь было связано с более медленным ростом электрической прочности внешней изоляции по сравнению с повышением напряжения сети.

Снижение уровня изоляции имеет также большое значение для других видов электрооборудования, особенно для силовых трансформаторов сверхвысокого напряжения.

Для отечественной практики создания и развития электропередач УВН (1150 кВ) вопрос о снижении уровня изоляции связан также с самой возможностью разработки электрооборудования этого класса напряжения.

Эффективность снижения уровня изоляции силовых трансформаторов  зависит от многих факторов: класса напряжения, количества обмоток, параметров и расположения обмоток на магнитопроводе, стоимости материалов, потерь и пр.

Для трансформаторов напряжением 330— 750 кВ каждый процент снижения испытательных  напряжений благодаря сокращению изоляционных расстояний позволяет уменьшить полную массу трансформатора на 0,4—0,7 % и увеличить мощность при тех же габаритах на 0,6—0,8 %.

Предел эффективного снижения уровня изоляции определяется прочностью при кратковременных воздействиях, которой будет обладать изоляция, выбранная только с учетом длительного воздействия рабочего напряжения.

На основании накопленных  к настоящему времени знаний о  длительной электрической прочности  внутренней изоляции можно сделать  вывод, что снижение уровня перенапряжений ниже 1,65^/др/'-уз неэффективно.

Уменьшение изоляционных расстояний приводит к увеличению рабочих напряжений в изоляции, что требует рассмотрения координации изоляции относительно длительного воздействия рабочего напряжения. Поэтому снижение испытательных напряжений основывается на совершенствовании не только способов ограничения перенапряжений, но также конструкций изоляции, технологии производства, заводских испытаний, мер по поддержанию необходимого качества изоляции в условиях эксплуатации.

Возможность надежной работы силовых трансформаторов со сниженными уровнями изоляции была подтверждена многочисленным опытом эксплуатации ряда конструкций трансформаторов на напряжение 500 кВ, изготовленных ПО «Запорожтрансформатор» с участием ВИТ и ВЭИ, а также трансформаторов на напряжение 1150 кВ.

Совершенствование методов  координации изоляции предполагает и совершенствование методов ее испытаний. Введение для электрооборудования СВН испытаний коммутационными импульсами (ГОСТ 1516.1-76, ГОСТ 20690-75 и ГОСТ 1516.3-96) обеспечило более полную проверку изоляции при воздействии внутренних перенапряжений.

Стандартный коммутационный импульс имеет время подъема напряжения до максимума 250 мкс и длительность (время до полуспада) 2500 мкс и обозначается 250/2500.

Важное, значение имело введение испытания напряжением промышленной частоты с измерением частичных разрядов, что позволило выявлять дефекты конструкции и технологии производства изоляции, которые могли быть не обнаружены традиционными кратковременными испытательными воздействиями и выявиться при длительном приложении рабочего напряжения в эксплуатации.

Отсюда введение испытаний  внутренней изоляции силовых трансформаторов и шунтирующих реакторов длительным (30—60 мин) переменным напряжением при допустимом уровне частичных разрядов 100 пКл. Введены также (ГОСТ 1516-3-96) испытания напряжением промышленной частоты с измерением частичных разрядов для внутренней изоляции трансформаторов напряжения и тока, вводов и изоляции КРУЭ

СПИСОК ЛИТЕРАТУРЫ

5.1. История энергетической техники СССР, Том 2. Электротехника. М.-Л.: Госэнергоиздат, 1957.

5.2. Смуров А.А. Электротехника высокого напряжения и передача электрической энергии. Л.: 1961.

5.3. Сушкин Н.И.. Глазунов А.А. Центральные электрические станции и их оборудование. М.: Госиздат, 1927.

5.4. Глазунов А.А. Расчет электрических распределительных сетей. М., 1923.

5.5. Горев А.А. Высоковольтные линии передач электрической энергии. Л., 1927.

5.6. Глазунов А.А. Линии электропередачи. М.,1928.

5.7. Лебедев С.А„ Жданов П.С. Устойчивость электрических систем. М.: Госэнергоиздат, 1-е изд. 1933, 2-е изд. 1937.

5.8. Горев А.А. Введение в теорию устойчивости параллельной работы электрических станций. Ч- I- М.: Госэнергоиздат, 1936,

5.9. Устойчивость электрических систем и динамические перенапряжения / С.А. Лебедев, П.С. Жданов, Д.А- Городский, Р.М. Кантор- М.: Госэнергоиздат, 1940.

5.10. Вейтков Ф.Л., Мешков В.К. Диспетчерское управление энергосистемами. М.: Стандартгиз, 1936.

5.11. Мельников Н.А., Рокотян С.С., Шеренцис А.Н. Проектирование электрической части воздушных линий электропередачи 330—500 кВ. М.: Энергия, 1974.

5.12. Тиходеев Н.Н. Передача электрической энергии / Под ред. В.И. Попкова. 2-е изд. Л.: Энергоатомиздат, 1984.

5.13. Проектирование линий электропередачи сверхвысокого напряжения / Под ред. Г.Н. Александрова и Л.Л. Петерсона. Л.: Энергоатомиздат, 1983.

5.14. Веников В.А. Применение теории подобия и физического моделирования в электротехнике. М.: Госэнергоиздат, 1949.

5.15. Сиротинский Л.И. Перенапряжения и защита от перенапряжений в электрических установках. М., 1923.

5.16. Смуров А.А. Электротехника высокого напряжения и передача энергии. М.: Гостехиздат, 1931. 5-17. Акопян А.А. Исследование защитногодействия молниеотводов // Труды ВЭИ. Госэнергоиздат, 1940. Вып. 36.

5.18. Базелян Э.М., Горин Б.Н., Левитов В.И, Физические и инженерные основы молниезащиты. Л.: Гидромстеоиздат. 1978.

5.19. Костенко М.В. Атмосферные перенапряжения и грозозащита высоковольтных установок. Л.: Госэнергоиздат, 1949.

5.20. Разевиг Д.В. Атмосферные перенапряжения на линиях электропередачи, М,-Л.: Госэнергоиздат, 1959.

5.21. Дмоховская Л.Ф. Инженерные расчеты внутренних перенапряжений в электропередачах. М.: Энергия, 1972.

5.22. Перенапряжения и защита от них в воздушных и кабельных электропередачах высокого напряжения / М.В. Костенко, К.П.  Кадомская,  М.Л.  Левинштейн, И.А. Ефремов. Л.: Наука, 1988.

5.23. Попков В.И. Коронный разряд и линии сверхвысокого напряжения. М.: Наука, 1990.

5.24. Гройс Е.С. Трубчатые разрядники. М.: Госэнергоиздат, 1941.

5.25. Безруков Ф-В., Галкин Ю.Л„ Юриков П.А. Трубчатые разрядники. М.: Энергия, 1964.

5.26. Вентильные разрядники высокого напряжения / Д.В. Шишман, А.И. Бронфман, В.И. Пружинина, В.П. Савельев. Л.; Энергия, 1971.

5.27. Сапожников А.В. Уровни изоляции электрооборудования высокого напряжения. М.: Энергия, 1969.

5.28. Щедрин Н.Н. Токи короткого замыкания высоковольтных систем. М.: Госэнергоиздат, 1935.

5.29. Ульянов С.А. Короткие замыкания в электрических системах, ОНТИ, 1937.

5.30. Соловьев И.И. Автоматизация энергетических систем, М.: Госэнергоиздат. 1950.

5.31. Электроэнергетика России / Под ред. А.Ф. Дьякова. М.: Информэнерго, 1997.

 


Информация о работе Развитие методов и аппаратуры для защиты от перенапряжений