Автор работы: Пользователь скрыл имя, 29 Апреля 2013 в 22:05, реферат
В газообразных промышленных выбросах вредные примеси можно разделить на две группы:
а) взвешенные частицы (аэрозоли) твердых веществ — пыль, дым; жидкостей — туман;
б) газообразные и парообразные вещества.
Введение 3
1 Классификация газообразных промышленных выбросов 3
2 Фильтрация 7
3 Очистка газов в фильтрах 8
3.1 Тканевые фильтры 10
3.2 Волокнистые фильтры 14
3.3 Зернистые фильтры. 18
3.4 Очистка газов в электрофильтрах 20
Список литературы 25
Министерство образования и науки РФ
Санкт-Петербургский
Государственный
Факультет электротехники и автоматики
Кафедра электротехнологической и преобразовательной техники
РЕФЕРАТ
на тему: Способы отчистки газовых выбросов
Студент Р.А.Булатов
Преподаватель А.М.Любомиров
Санкт-Петербург
2012
Содержание
Введение 3
1 Классификация газообразных промышленных выбросов 3
2 Фильтрация 7
3 Очистка газов в фильтрах 8
3.1 Тканевые фильтры 10
3.2 Волокнистые фильтры 14
3.3 Зернистые фильтры. 18
3.4 Очистка газов в электрофильтрах 20
Список литературы 25
1 Классификация газообразных промышленных выбросов
В газообразных промышленных выбросах вредные примеси можно разделить на две группы:
а) взвешенные частицы (аэрозоли) твердых веществ — пыль, дым; жидкостей — туман;
б) газообразные и парообразные вещества.
К аэрозолям относятся
взвешенные твердые частицы
В настоящее время, когда
безотходная технология находится
в периоде становления и
В таблице 1 выборочно приведены
ПДК некоторых атмосферных
Таблица 1 – ПДК некоторых атмосферных загрязнителей.
ВЕЩЕСТВА |
ПДК, мг/м3 максимальная разовая среднесуточная | |
Аммиак |
0,2 |
0,2 |
Ацетальдегид |
0,1 |
0,1 |
Ацетон |
0,35 |
0,35 |
Бензол |
1,5 |
1,5 |
Гексахлоран |
0,03 |
0,03 |
Ксилолы |
0,2 |
0,2 |
Марганец и его соединения |
— |
0,01 |
Мышьяк и его соединения |
— |
0,003 |
Метанол |
1,0 |
0,5 |
Нитробензол |
0,008 |
0,008 |
Оксид углерода (СО) |
3,0 |
1,0 |
Оксиды азота (в пересчете на N2O5) |
0,085 |
0,085 |
Оксиды фосфора (в пересчете наP2O5) |
0,15 |
0,05 |
Ртуть |
0,0003 |
0,0003 |
Свинец |
— |
0,0007 |
Сероводород |
0,008 |
0,008 |
Сероуглерод |
0,03 |
0,005 |
Серы диоксид SO2 |
0,5 |
0,05 |
Фенол |
0,01 |
0,01 |
Формальдегид |
0,035 |
0,012 |
Фтороводород |
0,05 |
0,005 |
Хлор |
0,1 |
0,03 |
Хлороводород |
0,2 |
0,2 |
Тетрахлорид углерода |
4,0 |
2,0 |
При содержании в воздухе нескольких токсичных соединений их суммарная концентрация не должна превышать 1, то есть
с1/ПДК1 + с2/ПДК2 + ... + сn/ПДКn = 1,(1)
где c1, с2, …, сn – фактическая концентрация загрязнителей в воздухе, мг/м3;
ПДК1, ПДК2, …, ПДКn – предельно допустимая концентрация, мг/м3.
При невозможности достигнуть
ПДК очисткой иногда применяют многократное
разбавление токсичных веществ
или выброс газов через высокие
дымовые трубы для рассеивания
примесей в верхних слоях атмосферы.
Теоретическое определение
,(2)
где ПДВ – предельно допустимый выброс вредных примесей в атмосферу, обеспечивающий концентрацию этих веществ в приземном слое воздуха не выше ПДК, г/с;
Н — высота трубы, м; V – объем газового выброса, м3/с;
Dt –разность между температурами газового выброса и окружающего воздуха, °С;
A – коэффициент, определяющий условия вертикального и горизонтального рассеивания вредных веществ в воздухе, с2/3- (ОС)1/3 (например, для района Урала А = 160);
F— безразмерный коэффициент,
учитывающий скорость
т — коэффициент, учитывающий условия выхода газа из устья трубы, его определяют графически или приближенно по формуле
,(3)
где – средняя скорость на выходе из трубы, м/с;
DT — Диаметр трубы, м.
Метод достижения ПДК с помощью «высоких труб» служит лишь паллиативом, так как не предохраняет атмосферу, а лишь переносит загрязнения из одного района в другие.
Основана на прохождении
очищаемого газа через различные
фильтрующие ткани (хлопок, шерсть,
химические волокна, стекловолокно
и др.) или через другие фильтрующие
материалы (керамика, металлокерамика,
пористые перегородки из пластмассы
и др.). Наиболее часто для фильтрации
применяют специально изготовленные
волокнистые материалы —
Тканевые фильтры, чаще всего
рукавные, применяются при температуре
очищаемого газа не выше 60-65°С. В зависимости
от гранулометрического состава
пыли и начальной запыленности степень
очистки (КПД) составляет 85-99%. Для непрерывной
очистки ткани продувают
Волокнистые фильтры, имеющие поры, равномерно распределенные между тонкими волокнами, работают с высокой эффективностью; степень очистки h = 99,5¸99,9 %
На фильтрах из стекловолокнистых материалов возможна очистка агрессивных газов при температуре до 275°С. Для тонкой очистки газов при повышенных температурах применяют фильтры из керамики, тонковолокнистой ваты из нержавеющей стали, обладающие высокой прочностью и устойчивостью к переменным нагрузкам;
Фильтрация – весьма распространенный
прием тонкой очистки газов. Ее преимущества
– сравнительная низкая стоимость
оборудования (за исключением
В основе работы пористых фильтров всех видов лежит процесс фильтрации газа через пористую перегородку, в ходе которого твердые частицы задерживаются, а газ полностью проходит сквозь нее.
Рисунок 1 - Динамический пылеуловитель: 1 - «улитка»; 2 - циклон; 3 - пылесборный бункер.
Фильтрующие перегородки весьма разнообразны по своей структуре, но в основном они состоят из волокнистых или зернистых элементов и условно подразделяются на следующие типы:
гибкие пористые перегородки - тканевые материалы из природных, синтетических или минеральных волокон: нетканыеволокнистые материалы (войлоки, клены и иглопробивные материалы, бумага, картон, волокнистые маты); ячеистые листы (губчатая резина, пенополиуретан,мембранные фильтры);
полужесткие пористые перегородки — слои волокон, стружка, вязаные сетки, положенные на опорных устройствах или зажатые между ними;
жесткие пористые перегородки — зернистые материалы ( пористая керамика или пластмасса, спеченные или спрессованные порошки металлов, пористые стекла, углеграфитовые материалы и др.); волокнистые материалы (сформированные слои из стеклянных и металлических волокон); металлические сетки и перфорированные листы.
В процессе очистки запыленного
газа частицы приближаются к волокнам
или к поверхности зерен
Проходя через фильтрующую перегородку, поток разделяется на тонкие непрерывно разъединяющиеся и смыкающиеся струйки. Частицы, обладая инерцией, стремятся перемещаться прямолинейно, сталкиваются с волокнами, зернами и удерживаются ими. Такой механизм характерен для захвата крупных частиц и проявляется сильнее при увеличении скорости фильтрования. Электростатический механизм захвата пылинок проявляется в том случае, когда волокна несут заряды или поляризованы внешним электрическим полем.
В фильтрах уловленные частицы накапливаются в порах или образуют пылевой слой на поверхности перегородки, и таким образом сами становятся для вновь поступающих частиц частью фильтрующей среды. По мере накопления пыли пористость перегородки уменьшается, а сопротивление возрастает. Поэтому возникает необходимость удаления пыли.
В зависимости от назначения и величины входной и выходной концентрации фильтры условно разделяют на три класса:
фильтры тонкой очистки (высокоэффективные или абсолютные фильтры) предназначены для улавливания с очень высокой эффективностью (>99%) в основном субмикронных частиц из промышленных газов с низкой входной концентрацией (<1 мг/м3) и скоростью фильтрования <10 см/с. Фильтры применяют для улавливания особо токсичных частиц, а также для ультратонкой очистки воздуха при проведении некоторых технологических процессов. Они не подвергаются регенерации;
воздушные фильтры - используют в системах приточной вентиляции и кондиционирования воздуха. Работают при концентрации пыли менее 50 мг/м3, при высокой скорости фильтрации - до 2,5-3 м/с. Фильтры могут быть нерегенерируемые и регенерируемые;
промышленные фильтры (тканевые, зернистые, грубоволокнистые) применяются для очистки промышленных газов концентрацией до 60 г/м3. Фильтры регенерируются.
Эти фильтры имеют наибольшее
распространение. Возможности их использования
расширяются в связи с
Корпус фильтра представляет собой металлический шкаф, разделенный вертикальными перегородками на секции, в каждой из которых размещена группа фильтрующих рукавов. Верхние концы рукавов заглушены и подвешены к раме, соединенной с встряхивающим механизмом. Внизу имеется бункер для пыли со шнеком для ее выгрузки. Встряхивание рукавов каждой из секций производится поочередно.
В тканевых фильтрах применяют
фильтрующие материалы двух типов:
обычные ткани, изготавливаемые
на ткацких станках и войлоки,
получаемые путем сволачивания или
механического перепутывания
Рисунок 2 - Рукавный фильтр:
1 - корпус; 2 - встряхивающее устройство; 3 - рукав;
4 - распределительная решетка.
К тканям предъявляются следующие требования:
1) высокая пылеемкость
при фильтрации и способность
удерживать после регенерации
такое количество пыли, которое
достаточно для обеспечения
2) сохранение оптимально
высокой воздухопроницаемости
3) высокая механическая
прочность и стойкость к
4) способность к легкому удалению накопленной пыли;
5) низкая стоимость.
Существующие материалы обладают не всеми указанными свойствами и их выбирают" в зависимости от конкретных условий очистки.
Ткань регенерируют путем продувки в обратном направлении, механического встряхивания или другими методами.
Средняя скорость фильтрации vср (в м/мин) для многосекционных тканевых фильтров
(5)
где - заданное сопротивление запыленной ткани перед регенерацией Па;
- продолжительность цикла фильтрации в секции, мин;
с' - исходная концентрация пыли, г/м3;
Кпс - коэффициент удельного сопротивления пыли, Н×мин/(кг×м);
- скорость фильтрации, м/мин ( определяют при = 49 Па);
,(6)
где - количество пыли, накопленное при увеличении сопротивления от
,
Коэффициент Кпс характеризует структуру слоя пыли в реальных условиях работы фильтра и представляет собой слой пыли массой 1 кг, накопленный на 1 м2 фильтрующей поверхности и создающий сопротивление 1 Па при скорости фильтрации = 1 м/мин.
Необходимая площадь ткани в м2 в одной секции
(7)
где — объем фильтруемого газа, м3/мин;
п — число секций.
Сопротивление запыленной ткани с учетом продувочного воздуха в регенерируемой секции определяется по уравнению
(8)
где — скорость продувочного воздуха через ткань в регенерируемой секции, м/мин.
Исходя из практических и
экономических соображений, сопротивление
фильтров не должно превышать 0,75—1,5 кПа,
лишь в особых случаях оно может
быть 2—2,5 кПа. При более высоком
значении сопротивления резко
Для приближенного расчета площади фильтрации следует определить общий расход запыленных газов (с учетом подсоса) и расход продувочных
газов, поступающих из регенерируемой секции. Надо знать скорость фильтрования. Тогда общая площадь фильтрации установки (в м2) составит
(9)
где SР - площадь фильтрации в одновременно работающих секциях, м2;
SС - площадь ткани в регенерируемой секции, м2;
- расход запыленных газов с учетом подсоса, м3/мин;
— расход продувочных газов или воздуха, м3/мин.
По данным практики, остаточная концентрация пыли после тканевых фильтров составляет 10—50 мг/м3./2,с.42/