Технические измерения и приборы

Автор работы: Пользователь скрыл имя, 25 Февраля 2013 в 21:02, контрольная работа

Описание работы

С помощью измерений получают информацию о состоянии производственных, экономических и социальных процессов. Измерительная информация служит основой для принятия решений о качестве продукции при внедрении систем качества, в научных экспериментах и т. д.. И только ее достоверность и точность обеспечивают правильность решений на всех уровнях управления. Недостоверная информация приводит к снижению качества продукции, авариям, неверным решениям.

Файлы: 1 файл

ТИП.docx

— 254.25 Кб (Скачать файл)

Влажность газов в технологических процессах обычно измеряют психрометрическим методом.

Действие психрометрических влагомеров основано на измерении двух температур: температуры «сухого» термодатчика, помещенного в анализируемый газ, и температуры «мокрого» термодатчика, завернутого в чулок из влажной ткани, конец которой опущен в воду. За счет испарения воды этот термодатчик охлаждается до температуры меньшей, чем температура газа. С увеличением влажности газа испарение идет менее интенсивно и температура «мокрого» термометра растет. При влажности 100 % вода вообще не будет испаряться и температуры обоих термодатчиков сравняются.

В промышленных влагомерах в качестве термодатчиков обычно используют термометры сопротивления, включенные. в схему для измерения отношения их сопротивлений, т. е. отношения температур «мокрого» и «сухого» термометров.

Психрометрический влагомер

Из принципиальной схемы влагомера  видно, что она состоит из двух неуравновешенных мостов, реохорда, усилителя, реверсивного электродвигателя и показывающего устройства. В плечи неуравновешенных мостов включены соответственно «сухой» (Rc) и «мокрый» (RM) термометры. Выходной сигнал моста - напряжение Uвключен встречно с напряжением U3, снимаемым о движка реохорда. Их разность AU приложена к входу усилителя. Там она усиливается и приводит в действие реверсивный электродвигатель. Вал электродвигателя перемещает движок реохорда и связанную с ним стрелку показывающего устройства.

Состояние равновесия в схеме наступает при равенстве напряжений Uи U3. При этом ΔU = 0, поэтому движок реохорда и стрелка прибора перестают перемещаться. Положение движка реохорода в момент равновесия зависит от отношения напряжений Uи U2, а значит, от отношения температур «сухого» и «мокрого» термометров. Таким образом, положение стрелки прибора однозначно связано с измеряемой влажностью газа. Для измерения влажности жидкостей применяют как специальные влагомеры, так и приборы, измеряющие какое-либо свойство жидкости, если оно связано с ее влажностью. Например, одной из характеристик пульп является соотношение жидкость: твердое в ее составе. Эту величину измеряют обычно плотномерами. В тех случаях, когда из пульпы удаляется только жидкая фаза (выпаривание, фильтрование), показания плотномера будут определяться содержанием жидкости в пульпе. В этом случае плотномер выполняет функцию влагомера.

В специальных влагомерах для жидкостей  используют емкостный и абсорбционный методы измерения.

Действие емкостных влагомеров основано на изменении диэлектрической проницаемости жидкости при изменении содержания в ней воды. Электрическая схема такого влагомера аналогична электрической схеме емкостного уровнемера. Изменение влажности жидкости приводит к изменению емкости

Сх и выходного напряжения моста U. Такими влагомерами измеряют содержание воды в нефти на нефтеперерабатывающих заводах. Диапазон измерения прибора 0-1 %.

Принцип действия абсорбционных влагомеров для жидкости основан на поглощении водой энергии излучения в области спектра близкой к инфракрасной.

Жидкость пропускают через камеру, где через нее проходит поток  излучения от источника. Так как в камере часть энергии поглощается влагой, энергия выходящего потока будет тем меньше, чем больше концентрация влаги в смеси.

Источником излучения служит лампа  накаливания, приемником - фоторезистор. Промышленные анализаторы влажности  служат для определения концентрации влаги в ацетоне и спиртах от 0 до 5 %.

Сложность измерения влажности твердых сыпучих и волокнистых материалов заключается в том, что при взаимодействии датчика с материалом может изменяться его структура, насыпная плотность и другие факторы, существенно увеличивающие погрешность прибора. Поэтому в промышленности нашли применение в основном бесконтактные методы измерения: оптический и сверхвысокочастотный.

В оптических влагомерах используется связь между влажностью вещества и потоком отраженного от него излучения. Для получения наибольшей чувствительности применяют излучение в инфракрасной области спектра, которое создается источником. Отраженный анализируемым материалом световой поток направляется собирающим устройством на приемник. Чем больше влажность материала, тем лучше он поглощает инфракрасное излучение и тем меньше величина отраженного потока.

Поскольку таким методом можно  измерить влажность лишь тонкого  слоя, влагомер обычно применяют для  сыпучих материалов, транспортируемых по конвейерным лентам.

Сверхвысокочастотные (СВЧ) влагомеры используют значительное (в десятки раз) различие электрических свойств воды и сухого материала. Концентрацию влаги измеряют по ослаблению СВЧ-излучения, проходящего через слой анализируемого материала. В таких влагомерах лента материала (например, волокнистого: бумага, картон) проходит между передающей и приемной антеннами. Передающая антенна соединена с СВЧ-генератором, приемная — с измерительным устройством. Чем больше влажность анализируемого материала, тем меньше сигнал, попадающий в измерительное устройство.

СВЧ-влагомеры позволяют измерять влажность в широком диапазоне (0-100 %) с высокой точностью.

Измерение кислотности

Кислотность водного раствора обусловлена  наличие в нем положительных  водородных ионов Н+ и оценивается  концентрацией в 1 литре раствора C(H+) (моль/л или г/л). В абсолютно  чистой воде концентрации ионов Н+ и  ОН– равны и раствор нейтрален. В кислых растворах преобладают ионы Н+, в щелочных – ионы ОН–, однако их произведение в любых условиях постоянно. Следовательно, увеличение концентрации одного типа ионов приводит к уменьшению концентрации другого типа в том же количестве. На практике степень кислотности (или щелочности) раствора выражается водородным показателем рН (от латинского «пундус гидрогениум» — вес водорода), представляющим собой отрицательный десятичный логарифм молярной концентрации водородных ионов рН = –lgC(H+). Эта величина может изменяться в небольших пределах – всего от –1 до 15 (а чаще – от 0 до 14). При этом изменению концентрации ионов Н+ в 10 раз соответствует изменение рН на одну единицу. Таким образом, концентрация водородных ионов в среде с рН = 5 в 10, 100 и 1000 раз выше, чем в среде с рН = 6, 7 и 8 соответственно.

Кислыми называют растворы, в которых  рН < 7, и, соответственно, чем ниже уровень pH, тем кислее раствор. В щелочных растворах рН > 7, и, чем ближе это значение к 14, тем раствор считается более щелочным. Установленная шкала кислотности идет от рН = 0 (крайне высокая кислотность) до рН = 14 (крайне высокая щелочность). Нейтральная среда имеет показатель ph, равный 7 (при комнатной температуре).

Показатель рН непосредственно влияет на нормальное протекание всех биохимических процессов у живых организмов. Очень важно, чтобы все процессы проходили при строго заданной кислотности. В частности, это необходимо для нормального функционирования биологических катализаторов – ферментов (при выходе за эти пределы их активность может резко снижаться). В клетках организма рН имеет значение около 7, во внеклеточной жидкости – 7,4. Наиболее чувствительны к изменению ph нервные окончания, которые находятся вне клеток. Кроме того, организм использует данное изменение ph в сигнальных целях: при механических или термических повреждениях тканей стенки клеток разрушаются и их содержимое попадает на нервные окончания. Было доказано, что боль вызывают именно катионы водорода, причем с уменьшением рН раствора боль усиливается, - и это лишь частный пример роли ph для живых организмов. Для примера, чистая природная, в частности дождевая, вода в отсутствие загрязнителей тем не менее имеет слабокислую реакцию (рН = 5,6), поскольку в ней легко растворяется углекислый газ с образованием слабой угольной кислоты.

Для определения степени кислотности используют специальные приборы - рН-метры, которые бывают весьма недешевы. Такие приборы измеряют электрический потенциал специального электрода (ЭДС), погруженного в раствор, и этот потенциал зависит от концентрации ионов водорода в растворе, и весьма вероятно измерить его с высокой точностью.

Простым способом определения характера  среды является применение индикаторов  – химических веществ, окраска которых  изменяется в зависимости от рН среды. Наиболее распространенные индикаторы – фенолфталеин, метилоранж, лакмус. Метиловый оранжевый при рН < 3,1 имеет красный цвет, а при рН > 4,4 – желтый; лакмус при рН < 6,1 красный, а при рН > 8 – синий и т.д. В домашних условия без наличия этих индикаторов для определения кислотности среды вполне пригодны естественные красители из красной капусты и черной смородины.

 

Для автоматического определения содержания жира в продуктах используют фотоэлектрические, ультразвуковые, высокочастотные, кондуктометрические, термоэлектрические и другие методы и средства.

1 Фотоэлектрические жиромеры

Принцип действия их основан на изменении  степени поглощения или рассеивания  светового потока слоем жировых шариков (жира).

Через емкость с испытуемым продуктом  пропускают световой поток от источника  излучения. Интенсивность этого  потока изменяется по сравнению с  исходной в зависимости от оптической плотности , которая зависит от его жирности. Полученный поток регистрируют фотоэлектрическим датчиком. Градуировку приборов периодически проверяют с помощью калибровочного фильтра с оптической плотностью, соответствующей определенной жирности.

Как показывают исследования погрешность  измерений жира, использующих данный метод измерений, составляет 0,05%.

2 Ультразвуковые жиромеры

Принцип действия ультразвуковых жиромеров  заключается в измерении скорости распространения, степени поглощения или рассеивания ультразвука  в продукте, которые зависят от содержания жира. Эта зависимость более резко выражена при температуре 50єС.

Типичная  схема построения ультразвуковых жиромеров  такова. Ультразвуковые колебания, которые  передаются датчиком погружного или проточного типа, воспринимаются вторичным прибором, который преобразует их в электрические сигналы. Блок счета импульсов в соответствии с полученными сигналами формирует показания прибора. На точность измерения влияет температура продукта. Поэтому поддержание постоянной температуры 50єC является необходимым условием измерений с высокой точностью (до 0,1% жира).

Ультразвуковые  жиромеры по сравнению с фотоэлектрическими имеют то преимущество, что не требуют гомогенизации продукта и его разбавления или обработки. Однако сложность конструкции и эксплуатации, а также высокая стоимость ограничивают применение этих приборов.

3 Жиромеры, основанные на измерении удельной теплоемкости

Принцип действия этих жиромеров основан  на измерении величины удельной теплоемкости, которая зависит от содержания жира. Продукт нагревают постоянным тепловым потоком от 60єС до 90єС (в этих условиях теплоемкость продукта практически мало зависит от температуру).

В зависимости от содержания жира в продукте меняется величина удельной теплоемкости продукта и соответственно время нагрева продукта в указанном диапазоне температур.

4 Жиромеры инфракрасной спектроскопии

Этими приборами можно определять содержание не только жира, но и других составных частей.

Разработанные жиромеры инфракрасной спектроскопии  функционируют следующим образом. Образец предварительно гомогенизируется и поступает в небольшой сосуд, через который проходит поток инфракрасного излучения с различной длиной волны (5,8; 6,5; 9,6 мкм). Интенсивность излучения определяют при выходе из сосуда. По степени поглощения этих волн определяют соответственно содержания в продукте жира, белка и лактозы. Само рассчитывают в зависимости от содержания белка и лактозы. По интенсивности потока инфракрасного излучения, проходящего через сосуд с водой, определяют поправку на поглощение потока излучения водой. Погрешность метода сравнима с погрешностью химических методов.

5 Высокочастотные жиромеры

Принцип действия этих жиромеров основан  на зависимости между величиной  одного из электрических параметров продукта, помещенного в поле высокой  частоты, и содержанием жира. Таким  параметром является в частности  диэлектрическая проницаемость.

Датчик  высокочастотного жиромера представляет собой электрический конденсатор с обкладками в виде двух коаксиальных круговых цилиндров. При заполнении конденсатора в нем поддерживается постоянный уровень жидкости. Внутренний и внешний электроды покрыты цилиндрическими тонкостенными прокладками из оргстекла. С измерительным прибором датчик соединяется экранированным кабелем.

6 Кондуктометрические жиромеры

Принцип их действия основан на зависимости  электропроводности продукта от содержания в нем жира.

Типичная  конструкция кондуктометрического жиромера состоит из измерительной  ячейки, термометра и измерительного устройства. Измерительная ячейка представляет собой емкость, в которую вмонтирован  двухэлектродный датчик и термометр.

Погрешность кондуктометрических жиромеров, получаемая при измерении содержания жира, слишком велика, поэтому их используют для определения жирности прочих  продуктов.

 

Белки 
Белки представляют главнейшую составную часть пищи человека, и потому количественное определение белковой фракции пищи и изучение ее аминокислотного состава дает важный материал для суждения о питательной ценности пищевых продуктов и пищу в целом. 
 
            Белки в то же время, как наименее устойчивое пищевое вещество, легко подвергаются распаду в результате воздействия бактериальных ферментов (реже ферментов самой пищи-аутолиз), что ведет к порче продуктов. 
 
            Белки сначала распадаются на протеазы, пептоны, пептиды, которые, не накапливаясь, распадаются на аминокислоты. В дальнейшем происходит расщепление аминокислот ,которое  может идти различными путями: декарбоксилированием, дезаминированием, обоими этими путями совместно в результате образуются азотистые основания(аммиак, амины) жирные кислоты, свободные углеводороды и пр. Конечными продуктами распада и превращения белков являются сероводород, аммиак, меркаптаны, фенол, индол, скатол и др. 
 
            Необходимо, однако, указать, что по отдельным химическим показателям нельзя судить о порче белковых продуктов питания. Так, накопление аминокислот не дает еще представления о порче, например, мяса. То же можно сказать о положительных качественных реакциях на аммиак и сероводород, которые обнаруживаются иногда и в совершенно свежем мясе. Методы, основанные на качественном обнаружении типичных продуктов гниения белка – индола, скатола, фенола, меркаптанов, не имеют практического значения, так как эти продукты обнаруживаются лишь тогда, когда развитие гнилостного распада не вызывает уже сомнения по одним органолептическим показателям. 
 
            Вот несмотря на большую давность вопроса о способах обнаружения порчи белковых продуктов питания, особенно на ранних стадиях протеолиза, этот вопрос не нашел еще своего разрешения, и в литературе появляются все новые и новые предложения по этому поводу. 
 
            Нет сомнения в том, что только в комплексах методов, слагающихся из органолептических, химических и микробиологических исследований, нужно искать разрешение вопроса. 

Информация о работе Технические измерения и приборы