Автор работы: Пользователь скрыл имя, 12 Марта 2014 в 15:54, реферат
Кокиль обычно состоит из двух полуформ 1, плиты 2, вставок 10.Полуформы взаимно центрируются штырями 8, и перед заливкой их соединяют замками 9. Размеры рабочей полости 13 кокиля больше размеров отливки на величину усадки сплава. Полости и отверстия в отливке могут быть выполнены металлическими 11 или песчаными 6 стержнями, извлекаемыми из отливки после ее затвердевания и охлаждения до заданной температуры. Расплав заливают в кокиль через литниковую систему 7, выполненную в его стенках, а питание массивных узлов отливки осуществляется из прибылей (питающих выпоров) 3. При заполнении кокиля расплавом воздух и газы удаляются из его рабочей полости через вентиляционные выпоры 4, пробки 5, каналы 12, образующие вентиляционную систему кокиля.
Сущность процесса. Основные операции. Область использования…..3
Основные операции технологического процесса.
Особенности формирования и качество отливок.
Эффективность производства и область применения.
Кокили…………………………………………………………………….9
Классификация конструкций.
Элементы конструкции.
Материалы для кокилей.
Изготовление кокилей.
Стойкость кокилей и пути ее повышения.
Технология литья в кокиль……………………………………………..21
Технологические режимы литья.
Особенности изготовления отливок из различных сплавов.
Отливки из алюминиевых сплавов.
Отливки из магниевых сплавов.
Отливки из медных сплавов.
Финишные операции и контроль отливок из цветных сплавов.
Дефекты отливок из цветных сплавов и меры их предупреждения.
* Составы применяют для
покрытия поверхности
В соответствии с необходимой скоростью отвода теплоты от различных мест отливки толщину и теплопроводность λкр огнеупорного покрытия можно делать разными в различных частях кокиля, создавая условия для направленного затвердевания отливки, регулируя скорость ее охлаждения в отдельных местах.
Огнеупорное покрытие уменьшает скорость нагрева рабочей поверхности кокиля; благодаря термическому сопротивлению огнеупорного покрытия температура рабочей поверхности будет ниже, чем без покрытия. Это снижает разность температур по толщине кокиля, уменьшает температурные напряжения в нем и повышает его стойкость.
Огнеупорное покрытие на поверхности кокиля должно иметь заданную теплопроводность, хорошо наноситься и удерживаться на поверхности формы, противостоять резким колебаниям температуры, не выделять газов при нагреве, способных растворяться в отливке или создавать на ее поверхности газовые раковины. Покрытия приготовляют из огнеупорных материалов, связующих, активизаторов и стабилизаторов (см. табл. 2.3).
В качестве огнеупорных материалов применяют пылевидный кварц, шамотный порошок, окислы и карбиды металлов, тальк, графит, асбест. Связующие для покрытий — жидкое стекло, огнеупорная глина, сульфитный щелок.
Активизаторы применяют для улучшения схватывания с поверхностью кокиля. В качестве активизаторов используют для шамотных и асбестовых покрытий буру (Na2B4O7* lOH2O) и борную кислоту (Н3ВO4); для маршалитовых — кремнефтористый натрий (Na2SiF6), для тальковых — буру, борную кислоту или марганцевокислый калий. Перед приготовлением огнеупорные материалы просеивают через сито 016—01.
Стабилизаторы применяют для того, чтобы уменьшить седиментацию огнеупорных составляющих покрытия. Чаще всего это поверхностно-активные вещества ОП5, ОП7.
При литье в кокиль чугуна для устранения отбела в отливках на огнеупорное покрытие наносят копоть (сажу) ацетиленового пламени.
Толщину слоя огнеупорного покрытия контролируют измерительными пластинами, проволочками, прямым измерением, электроконтактным способом. При прямом измерении толщину слоя облицовки определяют микрометром (рис. 2.14): измеряют расстояние от базовой поверхности 1 до поверхностей 2 и 3, соответственно не покрытой и покрытой облицовкой. Разность дает толщину слоя облицовки.
Схема распределения температур в системе отливка — покрытие — форма практически реализуется только для поверхностей отливки, которые при усадке образуют плотный контакт с кокилем, между охватываемыми поверхностями отливки и кокилем образуется зазор, изменяющийся по мере усадки отливки. Этот зазор заполнен воздухом и газами, выделяющимися из покрытия. Образование зазора приводит к увеличению термического сопротивления переносу теплоты от отливки в кокиль. Поэтому со стороны внутренних стенок отливка охлаждается интенсивнее, чем со стороны внешних. В результате смещается зона образования осевой пористости отливки к наружной ее стенке, что следует учитывать при разработке системы питания усадки отливки.
Рассмотренное явление используют для устранения отбела в поверхностных случаях чугунных отливок. Для этого после образо вания в отливке твердой корочки достаточной прочности кокиль слегка раскрывают гак чтобы между поверхностями отливки и кокиля образовался воздушный зазор. Тогда теплота затвердевания внутренних слоев отливки, проходя через затвердевающую наружную корку, разогревает ее и в результате происходит «самоотжиг» отливки — она не имеет отбела.
Скорость отвода теплоты от расплава и отливки зависит от разницы между температурами поверхностей отливки Т0 и кокиля Тп С повышением температуры заливаемого расплава возрастает температура То и скорость отвода теплоты от отливки; с повышением температуры Тn скорость отвода теплоты от отливки уменьшается. Поэтому на практике широко используют регулирование скорости отвода теплоты от расплава и отливки, изменяя температуры заливаемого сплава или кокиля перед заливкой. Однако чрезмерное снижение температуры заливаемого сплава приводит к ухудшению заполняемости кокиля. Повышение температуры кокиля увеличивает опасность приваривания отливки к кокилю, особенно при литье чугуна и стали, снижает стойкость кокиля.
Практически установлено, что оптимальная температура кокиля перед заливкой зависит от заливаемого сплава, толщины стенки отливки и ее конфигурации (табл. 2.4).
Температура заливки расплава в кокиль зависит от его химического состава, толщины стенки отливки, способа ее питания при затвердевании. Оптимальные температуры заливки в кокиль различных сплавов приведены ниже.
Технологические режимы изготовления отливок из различных сплавов обусловлены их литейными свойствами, конструкцией отливок и требованиями, предъявляемыми к их качеству.
Температура нагрева кокилей перед заливкой
Сплавы |
Отливки |
Толщина стенки отливок, мм |
Температура нагрева кокиля, К |
Алюминиевые |
Тонкостенные, ребристые |
1,6—2,1 |
673—693 |
Ребристые, корпусные |
5—10 |
623—673 | |
Простые, без ребер |
<8 >8 |
523—623 473—523 | |
Магниевые |
Тонкостенные, сложные |
623—670 | |
Медные |
Толстостенные Средней сложности |
5—10 |
523—620 393—473 |
Литейные свойства. Согласно ГОСТу литейные алюминиевые сплавы разделены на пять групп. Наилучшими литейными свойствами обладают сплавы I группы — силумины. Они имеют хорошую жидкотекучесть, небольшую (0,9—1%) линейную усадку, стойки к образованию трещин, достаточно герметичны. Это сплавы марок АЛ2, АЛ4, АЛ9, их широко используют в производстве. Однако они склонны к образованию грубой крупнозернистой эвтектики в структуре отливки и растворению газов.
При литье силуминов в кокиль структура отливок вследствие высокой скорости кристаллизации получается мелкозернистой. Основной недостаток сплавов I группы при литье в кокиль — склонность к образованию рассеянной газовой пористости в отливках.
Сплавы II группы (медистые силумины) также нередко отливают в кокиль. Эти сплавы обладают достаточно хорошими литейными свойствами и более высокой прочностью, чем силумины, менее склонны к образованию газовой пористости в отливках.
Сплавы III — V групп имеют худшие литейные свойства — пониженную жидкотекучесть, повышенную усадку (до 1,3%), склонны к образованию трещин, рыхлот и пористости в отливках. Получение отливок из этих сплавов требует строгого соблюдения технологических режимов, обеспечения хорошего заполнения формы, питания отливок при затвердевании.
Все литейные алюминиевые сплавы в жидком состоянии интенсивно растворяют газы и окисляются. При затвердевании сплава газы выделяются из раствора и образуют газовую и газоусадочную пористость, которая снижает механические свойства и герметичность отливок. Образующаяся на поверхности расплава пленка окислов при заполнении формы может разрушаться и попадать в тело отливки, снижая ее механические свойства и герметичность. При высоких скоростях движения расплава в литниковой системе пленка окислов, перемешиваясь с воздухом, образует пену, попадание которой в полость формы приводит к дефектам в теле отливок.
Влияние кокиля на свойства отливок. Интенсивное охлаждение расплава и отливки в кокиле увеличивает скорость ее затвердевания, что благоприятно влияет на структуру — измельчается зерно твердого раствора, эвтектики и вторичных фаз. Структура силуминов, отлитых в кокиль, близка к структуре модифицированных сплавов; снижается опасность появления газовой и газоусадочной пористости, уменьшается вредное влияние железа и других примесей. Это позволяет допускать большее содержание железа в алюминиевых отливках, получаемых в кокилях, по сравнению с отливками в песчаные формы. Все это способствует повышению механических свойств отливок, их герметичности.
Кокили для литья алюминиевых сплавов применяют массивные, толстостенные. Такие кокили имеют высокую стойкость и большую тепловую инерцию: после нагрева до рабочей температуры они охлаждаются медленно. Это позволяет с большей точностью поддерживать температурный режим литья и получать тонкостенные отливки. Для отливок сложной конфигурации используют кокили, имеющие системы нагрева или охлаждения отдельных частей. Это дает возможность обеспечить направленное затвердевание и питание отливок. Для получения точных отливок рабочую полость кокиля обычно выполняют обработкой резанием.
Положение отливки в форме должно способствовать ее направленному затвердеванию: топкие части отливки располагают внизу, а массивные вверху, устанавливая на них прибыли и питающие выпоры.
Литниковая система должна обеспечивать спокойное, плавное поступление расплава в полость формы, надежное улавливание окисных плен, шлаковых включений и предотвратить их образование в каналах литниковой системы и полости кокиля, способствовать направленному затвердеванию и питанию массивных узлов отливки.
Используют литниковые системы с подводом расплава сверху, снизу, сбоку, комбинированные и ярусные (рис. 2.15, а).
Литниковые системы с верхним подводом используют для невысоких отливок типа втулок и колец (I, 1—3). Такие литниковые системы просты, позволяют достичь высокого коэффициента выхода годного. Заливка с кантовкой кокилей с такой литниковой системой обеспечивает плавное заполнение формы и способствует направленному затвердеванию отливок.
Литниковые системы с подводом расплава снизу используют для отливок корпусов, высоких втулок, крышек (II, 1—3). Для уменьшения скорости входа расплава в форму стояк делают зигзагообразным (II, 1), наклонным (II, 2). Для задержания шлака устанавливают шлакозадерживающие бобышки Б (II, 1); для удаления первых охлажденных порций расплава, содержащих шлаковые включения, используют промывники П (II 3).
Литниковые системы с подводом расплав, а сбоку через щелевой литник (III, 1—3), предложенные акад. А. А. Бочваром и проф. А. Г. Спасским, сохраняют основные преимущества сифонной заливки и способствуют направленному затвердеванию Отливки. На практике используют несколько вариантов таких систем. Стояки выполняют также наклонными или сложной формы, так называемые гусиные шейки. Эти стояки снижают скорость, исключают захват воздуха, образование шла ков и пены в литниковой системе, обеспечивают плавное заполнение формы расплавом. При заливке крупных отливок обязательным элементом литниковой системы является вертикальный канал, являющийся коллектором.
I |
1 |
2 |
|
II |
1 |
2 |
3 |
III |
1 |
2 |
3 |
IV |
1 |
2 |
3 |
V |
1 |
2 |
3 |
Расплав (б) из чаши 1 поступает в зигзагообразный стояк 2, а из него — в вертикальный канал 3 — колодец — и вертикальный щелевой питатель 4, Соотношение площадей поперечных сечений элементов литниковой системы подбирают так, чтобы уровень расплава в форме во время ее заполнения был ниже уровня в канале 3; верхние порции расплава должны сливаться в форму и замещаться более горячим расплавом. Размеры канала 3 и питателя 4 назначают сообразно с толщиной стенки отливки 5; чтобы избежать усадочных дефектов в отливке, расплав в канале 3 и питателе 4 должен затвердевать позже отливки. Недостаток литниковой системы — большой расход металла на литники и сложность отделения их от отливки.
Литниковые системы с комбинированным подводом используют для сложных отливок . Нижний питатель способствует спокойному заполнению формы, а верхний подает наиболее горячий расплав под прибыль, улучшая ее питающее действие.
Ярусные литниковые системы используют для улучшения заполнения формы тонкостенных сложных или мелких отливок.
Размеры элементов литниковых систем для отливок из алюминиевых и магниевых сплавов определяют, исходя из следующих положений: значения критерия Re для различных элементов литниковой системы (стояка, коллектора, питателей) не должны превосходить гарантирующих минимальное попадание окислов и неметаллических включений в форму вследствие нарушении сплошности; скорость движения расплава в форме должна обеспечить ее заполнение без образования в отливке неслитин и спаев.
Ниже приведены максимальные допустимые значения критерия Re = ud/v для различных элементов литниковых систем, по данным Н. М. Галдина и Е. Б. Ноткина [8]:
Стояк Коллектор Питатели Форма: простая . сложная |
43500—48300 28000—33800 7800—5300 2600—1350 780 |