Автор работы: Пользователь скрыл имя, 24 Апреля 2014 в 00:26, курсовая работа
В настоящее время астрономия, благодаря своим достижениям и средствам массовой информации стала интересна и доступна широкому кругу людей вне зависимости от возраста и уровня образования. Ее эвристическое значение и эмоциональное воздействие на людей чувствуется ежедневно. Поэтому не удивляет стремление как можно раньше приобщить учеников к астрономическим знаниям, введение астрономической информации в начальной школе и даже в детском саду. С другой стороны, в силу своей специфичности и необычности, ограничений по времени, обучение астрономии требует больших усилий для учителей, поэтому в системе среднего образования наметилась тенденция убрать отдельный предмет астрономии из программы общеобразовательной школы. В США эти тенденции еще в конце ХГХ в. привели к тому, что астрономия была исключена как предмет из школьного курса.
Как известно, каждый атом состоит из положительно заряженного ядра, в котором сосредоточена почти вся масса атома, и электронов, вращающихся вокруг ядра и образующих электронную оболочку атома. Эта оболочка и в особенности её внешний слой, содержащий электроны, сравнительно слабо связанные с ядром, обладают довольно хрупкой структурой. При столкновении атома с какой-либо быстро движущейся частицей один из внешних электронов может быть оторван от атома, который превратиться в положительно заряженный ион. Именно этот процесс ионизации и будет наиболее характерен для рассматриваемой стадии нагревания вещества. При достаточно высокой температуре газ перестаёт быть нейтральным: в нём появляются положительные ионы и свободные электроны, оторванные от атомов.
В условиях, когда нагретое вещество находиться в тепловом равновесии с окружающей средой (в нашем случае со стенками воображаемого идеального сосуда) при температуре в несколько десятков тысяч градусов, подавляющая часть атомов в любом газе ионизирована, и нейтральные атомы практически отсутствуют. Например, при T= 30 000 градусов на 20 000 положительных ионов приходиться всего лишь один нейтральный атом.
Электронная оболочка атома водорода содержит только один электрон,
и поэтому с потерей атома ионизация заканчивается.
В атомах других элементов электронная
оболочка имеет более сложную структуру.
В её состав входят электроны, обладающие
разной степенью связи с атомом в целом.
Электроны, принадлежащие к внешним слоям
оболочки, отрываются сравнительно легко.
Как уже говорилось выше, при температуре
порядка 20 000 – 30 000 градусов почти не должно
оставаться примесей нейтральных атомов.
Это означает, что можно говорить о полной
ионизации газа. Однако это не означает,
что процесс ионизации закончился, т.к.
положительные ионы в упомянутой области
температур сохраняют значительную часть
своего «электронного одеяния». Чем больше
порядковый номер элемента в периодической
системе Менделеева, тем больше число
электронов в атоме и тем прочнее связаны
электроны внутренних слоёв оболочки
с атомным ядром. Поэтому окончательная
ионизация тяжёлых элементов только при
очень высоких температурах (десятки миллионов
градусов). При этом газ остаётся в целом
нейтральным, т.к. процессы ионизации не
создают избытка в зарядах того или иного
знака. Таким образом, при достаточно больших
температурах происходит ионизация газа
за счёт столкновения быстродвижущихся
атомов или молекул.
Далее можно ввести словесное определение
понятия «плазма»:
Плазма – это частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически совпадают, т. е. в целом плазма является электрически нейтральной системой.
Почти все вещества при постепенном повышении их температуры от абсолютного нуля проходят последовательно следующие состояния: твёрдое, жидкое, газообразное, плазма. И нередко у учащихся складывается ошибочное представление о плазме, как о состоянии вещества при очень высоких температурах, т.е. температурах, при которых происходит термическая диссоциация атомов или молекул газа. Именно этот недостаток следует преодолеть, знакомя учащихся с понятием плазмы. Так, наряду с нагреванием ионизация газа и образование плазмы могут быть вызваны разного рода излучениями или бомбардировкой атомов газа быстрыми заряженными частицами.
2.2. Формирование
понятия астрономические
В качестве основных групп астрономических понятий мы выделяем:
- объекты познания науки: космические объекты, космические процессы и космические явления;
- методы и инструменты
астрономических исследований;
- астрономические законы и теории.
Астрономические законы выражают внешние и внутренние существенно-необходимые связи между космическими объектами, процессами и явлениями; носят, как правило, эмпирический характер; выводятся на основе данных астрономических исследований и объясняются на основе законов физики в рамках физических теорий.
Астрономические теории представляют собой систему знаний о Вселенной более высокой, нежели законы, степени обоснованности и обобщенности и включают в себя в качестве основания данные, полученные в результате астрономических наблюдений и исследований в области ряда других естественно-математических наук; ядром их являются астрономические и физические законы и специфический математический аппарат; следствиями - объяснение механизма космических процессов и природы космических объектов во всей сложности и многообразии их взаимных связей, и использование полученных знаний в практических целях во благо человечества.
Астрономические законы отражают в основном связь между космическими телами и космическими явлениями; астрономические теории - природу и развитие космических процессов.
Основным методом астрономических исследований являются астрономические наблюдения, поставляющие свыше 90% информации о космических процессах, явлениях и объектах. Астрономические наблюдения характеризуются пассивностью по отношению к изучаемым объектам: до начала космической эры отсутствовала возможность проведения экспериментальных астрономических исследований; в наши дни возможность прямого изучения космических тел явлений ограничена пределами Солнечной системы; возможность активного влияния на космические явления и, тем более, процессы практически отсутствует. Другой особенностью астрономических исследований является необходимость предварительного объяснения новых открытий иногда задолго до их теоретического истолкования, что придает ряду астрономических законов и теорий характер неформализованных (интуитивных).
Основными инструментами исследований в области астрометрии и небесной механики являются разного рода угломерные приборы в комбинации с различными приемниками-регистраторами электромагнитного излучения и приборы для измерения и хранения времени.
Основными инструментами астрофизических исследований являются телескопы, предназначенные для регистрации электромагнитного излучения и потоков элементарных частиц, испускаемых исследуемыми объектами, усиления создаваемой ими освещенности и увеличения их видимых угловых размеров. Телескопы, приемники элементарных частиц и детекторы космических лучей условно подразделяются по диапазонам воспринимаемого ими излучения.
В зависимости от характеристик диапазона регистрируемого излучения исследуемых объектов, условий и особенностей проведения наблюдений в астрономии условно выделяют разделы: радио-, оптической, инфракрасной, ультрафиолетовой, рентгеновской, гамма-, нейтринной и т.д. астрономии; наземной и внеатмосферной астрономии и т.д. Специфика применения различных вспомогательных физических приборов для решения конкретных задач исследования природы космических объектов, процессов и явлений породила классификацию методов астрономических наблюдений на основе применяемых инструментов: визуальные, телескопические, фотометрические, фотографические, спектрометрические и т.д. и существование соответствующих разделов астрономии. Космические объекты могут рассматриваться как системы определенным образом организованных взаимосвязанных вещественных тел и полевых элементов.
Космические тела - физические тела, рассматриваемые в рамках понятийного аппарата науки астрономии как структурные единицы (элементы) Вселенной; в ряде случаев возможна упрощенная геометрическая интерпретация космических тел как ограниченных участков пространства вместе с их границами.
Небесные тела - космические тела, рассматриваемые в рамках понятийного аппарата классической астрономии без учета особенностей их физической природы, как материальные точки или шары однородной плотности.
Системы космических тел - некоторые количества (множества) находящихся в определенных отношениях, физически взаимосвязанных космических тел, образующих некую качественно отличную от составляющих их элементов структуру.
Небесные светила - видимые проекции космических тел на небесную сферу.
Космические явления - физические явления, возникающие в результате или обусловленные протеканием космических процессов и (или) взаимодействием космических объектов. Классифицируются по типу фундаментального физического взаимодействия, лежащего в основе данного явления.
Небесные явления - космические явления, наблюдаемые с поверхности Земли и (или) обусловленные воздействием космических объектов и процессов на Землю.
Понятийный аппарат астрономии обладает своей классификацией - системой соподчинения понятий (классов объектов), используемой как средство для установления связей между ними и выражающей систему законов, присущих отображенным в ней объектам Вселенной.
Космические объекты классифицируются по существенным признакам, в качестве которых выступают их фундаментальные физические характеристики (масса, размеры и т.д.), структура и характер физических процессов, обеспечивающих их возникновение, существование и развитие.
В основе классификации лежат принципы таксономии - теории классификации и систематизации сложноорганизованных областей действительности, имеющих иерархическое строение, и основные методы типологии и систематики, при последовательном разделении систем объектов и их группировке с помощью обобщенной модели (типа) в целях сравнительного изучения существенных признаков, связей, функций, отношений и уровней организации объектов с учетом специфических особенностей каждого вида и таксона более высокого ранга с выяснением общих свойств у различных таксонов.
Таксонометрия выделяет следующие иерархические категории понятий, которые мы с некоторыми оговорками будем далее использовать для классификации астрономических понятий:
вид => род => семейство => группа => класс => тип.
В качестве основной структурной и классификационной единицы в системах объектов астрономических исследований мы выделяем некоторую совокупность отдельных объектов, обладающих рядом общих существенных признаков по фундаментальным физическим характеристикам - группы космических тел.
Некоторое число групп космических тел, обладающих помимо единого общего признака (свойства), общностью структуры, строения и происхождения, объединяются в классы космических тел.
На основе единого, общего для ряда классов космических тел признака, определяющего все остальные физические свойства и характеристики, единый план строения, структуру, образование и эволюцию, а также характер космических процессов, лежащих в основе их существования, выделяются типы космических тел.
Некоторое элементарно-эмпирическое "донаучное" разделение космических объектов на отдельные классы по их основным физическим характеристикам происходит при изучении соответствующего астрономического материала еще в начальной школе.
Выбор основания для классификации космических объектов, изучаемых в школьном курсе астрономии (физики и астрономии), затрудняется отсутствием единой четкой классификации в "большой науке", возрастными особенностями мышления учащихся и недостатком у них соответствующих физико-математических знаний.
Пространственные характеристики (линейные размеры, объем и т.д.) космических тел неудобны для основ их классификации, поскольку несколько неопределенны (размыты) даже в пределах отдельных интуитивно выделяемых типов космических тел (так, размеры планет лежат в пределах от 104 до 106 м, а размеры звезд - от 104 до 108 м) и пригодны лишь в качестве второстепенного (дополнительного) признака каждого класса объектов.
Временные характеристики (продолжительность существования и т.д.) также могут быть лишь дополнительными признаками космических тел, и не могут быть основой их классификации, поскольку существенно различны даже внутри отдельных групп и классов объектов (так, время жизни звезд-сверхгигантов - 106 - 107 лет, а нормальных звезд и белых карликов до 109 - 1011 лет); в системах космических тел время существования отдельных объектов зависит от характера их взаимодействия (судьбы планетных систем неразрывно связаны с их центральными светилами-звездами; в тесных двойных звездных системах зависят от масс компонент и расстояния между ними и т.д.).
|
Рис. 1. Основные группы астрономических понятий |
Классификация космических тел по одной из их главных физических характеристик - типам и мерам фундаментальных взаимодействий - представляется нам наиболее удобной.
В курсе физики современной российской школы изучаются все 4 вида фундаментальных физических взаимодействий, однако сильное (ядерное) рассматривается в самых общих чертах лишь в XI классе, где о слабом взаимодействии по сути только упоминается; электромагнитное и гравитационное изучаются на протяжении ряда лет, причем не только в средней, но и в основной 9-летней школе.
Наиболее подробно и традиционно глубоко рассматривается гравитационное взаимодействие - единственное понятие, которое формируется в сознании учащихся в VП - IX классах в относительно полном и обобщенном виде, и связанный с ним комплекс физических процессов и явлений, описываемых в рамках исторически первой физической теории Всемирного тяготения.
В качестве основания для единой классификации космических тел по общему существенному признаку мы выделяем массу - фундаментальную физическую величину, меру гравитационных, инертных свойств и энергии материальных объектов, определяющую практически все физические свойства и характеристики космических тел, их структуру, строение, образование и развитие, "время жизни", характер космических процессов, лежащих в основе их существования и природу значительной части порождаемых ими космических явлений.
Информация о работе Методика формирования астрономических понятий в школьном курсе физики