Полевые транзисторы и их применение

Автор работы: Пользователь скрыл имя, 18 Мая 2014 в 10:06, курсовая работа

Описание работы

Целями данной курсовой работы являются формирование научной основы для целенаправленного использования полученных знаний при создании элементов, приборов и устройств микроэлектроники, практическое освоение основных понятий, полупроводниковых устройств, в частности, полевых транзисторов, изучение основ создания электронной компонентной базы и ее применения для создания электронных устройств различного назначения. Задачами курсовой работы являются практическое освоение основных понятий, расширение научного кругозора и эрудиции на базе изучения основ строения материалов и физики происходящих в них явлений, технологии материалов электронной и микроэлектронной техники, для последующего использования их при создании приборов твердотельной электроники и разработке технологии микроэлектроники.

Содержание работы

Введение
1 Принципы работы полевых транзисторов
1.1 История создания полевых транзисторов
1.2 Классификация полевых транзисторов
1.3 Транзисторы с управляющим p - n переходом
1.4 Транзисторы с изолированным затвором (МДП-транзисторы)
1.5 МДП-транзисторы с индуцированным каналом
1.6 МДП-транзисторы со встроенным каналом
1.7 МДП-структуры специального назначения
2 Схемы включения полевых транзисторов
3 Применение полевых транзисторов
4 Перспективы развития
Заключение
Литература

Файлы: 1 файл

Полевые транзисторы и их применение_31.doc

— 973.00 Кб (Скачать файл)

Полевые транзисторы и их применение

 

Содержание

Стр.

 

Введение

2

1

Принципы работы полевых транзисторов

6

1.1

История создания полевых транзисторов

6

1.2

Классификация полевых транзисторов

8

1.3

Транзисторы с управляющим p - n переходом

9

1.4

Транзисторы с изолированным затвором (МДП-транзисторы)

12

1.5

МДП-транзисторы с индуцированным каналом

14

1.6

МДП-транзисторы со встроенным каналом

15

1.7

МДП-структуры специального назначения

16

2

Схемы включения полевых транзисторов

17

3

Применение полевых транзисторов

18

4

Перспективы развития

19

 

Заключение

21

 

Литература

22


 

 

 

 

 

 

 

 

 

Введение

Актуальность темы. Полупроводниковые устройства, такие как диоды, транзисторы и интегральные схемы используются весьма широко в различных устройствах специальной и бытовой техники, таких, как плееры, телевизоры, автомобили, стиральные машины и компьютеры. Полупроводниковые приборы прочно вошли в нашу жизнь, их характеристики продолжают совершенствоваться, а цена – снижаться. Особенно характерно это на примере компьютеров, когда сложность и характеристики современного компьютера значительно превышают возможности персональных компьютеров пятилетней давности. Прогресс в области вычислительной техники значительно превышает прогресс в других областях техники. Например, невозможно представить улучшение характеристик автомобиля  в пять раз (по мощности и скорости) за пять лет по той же самой цене. Тем не менее, когда речь идет о персональных компьютерах, такие ожидания вполне реальны. Определяющим фактором такого прогресса является совершенствование технологии производства транзисторов и микросхем, их микроминиатюризация, в частности на основе полевых транзисторов. Характеристики этих устройств улучшаются год от года, потребляемая мощность снижается, их стоимость уменьшается. Поэтому изучение физики работы таких приборов, технологии их производства и применения в различных областях является весьма актуальной темой.

Цель работы и решаемые задач. Целями данной курсовой работы являются формирование научной основы для целенаправленного использования полученных знаний при создании элементов, приборов и устройств микроэлектроники, практическое освоение основных понятий, полупроводниковых устройств, в частности, полевых транзисторов, изучение основ создания электронной компонентной базы и ее применения для создания электронных устройств различного назначения. Задачами курсовой работы являются практическое освоение основных понятий, расширение научного кругозора и эрудиции  на базе изучения основ строения материалов и физики происходящих в них явлений, технологии материалов электронной и микроэлектронной техники, для последующего использования их при создании приборов твердотельной электроники и разработке технологии микроэлектроники.

Полевой транзистор (field effect transistor - FET  – англ.) – это полупроводниковый прибор [8], в котором протекает ток, обусловленный носителями заряда одного типа. Протекание тока в полевом транзисторе осуществляется за счет действия управляющего электрического поля, направление которого перпендикулярно протеканию тока. В силу того, что ток в таких приборах обусловлен носителями одного типа (электронами или дырками), такие приборы называют униполярными (в отличие от биполярных транзисторов). По принципу работы и конструкции полевые транзисторы условно можно разделить на два класса. Первый - это транзисторы с управляющим p – n - переходом или переходом металл–полупроводник (барьер Шоттки), второй — транзисторы с управлением с помощью изолированного электрода (затвора), так называемые транзисторы МДП (метал–диэлектрик–полупроводник) или МОП (металл–оксид–полупроводник). По применению можно выделить 4 основных направления: цифровые устройства и интегральные схемы, для общего применения, использование для создания СВЧ устройств и применение для создания устройств высокой мощности. Технология создания полевых транзисторов включает следующие основные направления:

  • FET
  • JFET
  • MOSFET
  • VMOS
  • UMOS
  • TrenchMOS
  • GaAsFET/MESFET
  • HEMPT/PHEMPT
  • FinFET

Идея FET известна уже много лет. Наиболее ранние публикации по этой теме – это идеи Лилиенфилда (1926 г) и Хейла (1935г).

JFET - один из наиболее широко используемых типов полевых транзисторов. Это была первая конфигурация полевого транзистора, которая в дальнейшем будет совершенствоваться, что позволит использовать ее во многих областях электроники.

 MOSFET – полевой транзистор на основе MOS (Metal Oxide Semiconductor – металл-окисел-полупроводник) технологии имеет много преимуществ как с точки зрения высокого входного сопротивления, так и рабочих характеристик в целом.

VMOS (Vertical Metal Oxide Semiconductor) – это разновидность мощного полевого транзистора типа MOSFET, он используется в областях, где требуются средние уровни мощности. Термин Vmos также используется, чтобы описать форму V-углубления, которая вертикально внедряется в материал подложки транзистора. Разработка и внедрение транзисторов данной конфигурации дали существенные преимущества по сравнению с применением биполярных транзисторов в различных областях от мощных источников питания до усилителей и переключателей средней мощности. Они также нашли применение как быстродействующие переключатели в интегральных схемах. 

UMOS или UMOSFET - полевой транзистор на основе МОП технологии, также  разновидность мощного полевого транзистора типа MOSFET, по конфигурации он похож на VMOS. Это - немного более поздняя разработка по сравнению с VMOS, в которой усовершенствован тот же самый основной принцип со структурой в виде «канавки» ("trench"). Эти транзисторы применяются там, где требуются достаточно высокие мощности в устройствах питания, а также как мощные транзисторы в радиотехнических устройствах.  UMOSFETs в состоянии обеспечить полезную функцию во многих относительно мощных заявлениях, и в электроснабжении и как транзисторы власти RF.

TrenchMOS или Trenchgate MOS – это также  технология "trench", но она обеспечивает значительное улучшение по мощности по сравнению с предыдущими МОП технологиями. Устройства TrenchMOS позволяют разработчикам электроники разработать устройства с более благоприятными условиями теплообмена при более высоких скоростях управления током при тех же самых размерах чипа.

GaAs Fet или MESFET - MESFET (MEtal-Semiconductor Field Effect Transistor – металл-полупроводниковый полевой транзистор) – высокоэффективная конфигурация полевого транзистора, который используется, главным образом, в области микроволновой техники и усилителях радиодиапазона. Как правило, он изготавливается на основе арсенида галлия (аббревиатура – GaAsFET  или MESFET – англ.). Эти устройства во многом схожи с FET или JFET, однако значительно их превосходят в области СВЧ, особенно для усилителей СВЧ диапазона. Основное различие между  MOSFET и MESFET  состоит в применении в MESFET диода с барьером Шоттки вместо оксидного слоя для изоляции затвора от канала.

HEMT/PHEMPT (High Electron Mobility transistor/ Pseudomorphic High Electron Mobility Transistors – транзистор с высокой подвижностью электронов/транзистор с высокой подвижностью электронов с псевдоморфным слоем), также называемый HFET или MODFET. Имеет чрезвычайно высокие характеристики в микроволновом диапазоне частот. HEMT обладает сочетанием очень низкого уровня шумов при работе на сверх высоких частотах. Соответственно, он используется при разработке высокоэффективных СВЧ устройств, где требуется обеспечить низкий уровень шумов. Следующая поколение HEMT известно как PHEMT, которые весьма активно используются в беспроводной связи и малошумящих усилителях. Транзисторы PHEMT нашли широкое применение благодаря работе при больших мощностях, низких шумах и высоких характеристиках. Это позволяет широко использовать транзисторы PHEMT типа в системах спутниковой связи различного назначения, включая прямую трансляцию телевизионных каналов через спутник, предусилителях, используемых со спутниковыми антеннами. Они также широко используются в общих системах спутниковой связи, а также радарах и микроволновых системах радиосвязи. Технология PHEMT также используется в быстродействующих аналоговых и цифровых интегральных схемах, где требуется чрезвычайно высокая скорость передачи данных.

FinFET (Fin – ребро) – объемные (3D) полевые транзисторы с несколькими, как правило, тремя затворами, расположенными вокруг кремниевого канала в объемной структуре. Ширина ребер может составлять 10 - 15 нм, высота в идеальном варианте может быть в два или более раз больше. Используется во многих технологиях изготовления интегральных схем для уменьшения размеров элементов и снижения энергопотребления – преимуществ, необходимых для смартфонов, планшетов, мощных процессоров.

  1. Принципы работы полевых транзисторов [1- 7].

    1. История создания полевых транзисторов

Идея полевого транзистора впервые была предложена Лилиенфельдом [9] в 1926 – 1928 годах.  Эти конфигурации транзисторов  не были внедрены в производство по объективным причинам. Реальный работающий прибор был создан в 1960 году. Конструкция транзистора по патенту Лилиенфельда № 1900018 представлен на Рис.1. [10]

Рис.1. Полевой транзистор Лилиенфельда.

В 1935 году О. Хейлу в Англии был выдан патент на полевой транзистор (Рис. 2)

Рис. 2 Схема из патента О. Хейла № 439457. Прототип полевого транзистора с изолированным затвором.

1- управляющий электрод (затвор); 2 – тонкий слой полупроводника(теллур, йод, окись меди, пятиокись ванадия; 3 (сток); 4 (исток) – омические контакты к полупроводнику; 5 – источник постоянного тока; 6 – источник переменного напряжения; 7 – амперметр.  

В 1952 г. Шокли изобрел полевой транзистор с управляющим электродом. Эта конструкция представляла собой обратно смещенный p-n – переход (см. рис. 3). Конструкция полевого транзистора имела полупроводниковый стержень n-типа (канал n-типа) с омическими выводами на торцах. В качестве полупроводника был применен кремний (Si). p-n-переход был сформирован на поверхности канала с противоположных сторон.  p-n-переход формируется таким образом, чтобы он был параллелен направлению тока в канале. Основные носители заряда для данного канала – электроны, определяющие проводимость канала текут от истока к стоку. На рис. 3 – это отрицательный электрод.

Рис. 3   Полевой транзистор Шокли.

В 1966 году Мидом была создана и реализована третья конструкция полевых транзисторов (с барьером Шоттки).

В 1963 г. Хофштейн и Хайман разработали полевой транзистора на основе МДП структур. С 1952 по 1970 г.г. эти транзисторы находились еще на лабораторной стадии разработки. В настоящее время эта технология одна из наиболее широко используемых для производства интегральных схем.

    1. Классификация полевых транзисторов

Как уже упоминалось, полевые транзисторы условно можно разделить на 2 группы. К первой можно отнести транзисторы с управляющим р-n переходом, или переходом металл — полупроводник, ко второй — транзисторы с управляющим изолированным электродом (затвором), транзисторы МДП или МОП.

Рис.4. Классификация полевых транзисторов

1.3.Транзисторы с управляющим p - n переходом

Полевой транзистор с управляющим p-n переходом — это полевой транзистор, затвор которого изолирован (то есть отделён в электрическом отношении) от канала р – n переходом, смещённым в обратном направлении. Поскольку у полевой транзистор управляется с помощью электрического поля, не с помощью протекающего тока, то он обладает крайне высоким входным сопротивлением порядка сотен ГОм и даже ТОм (биполярный транзистор имеет сотни КОм). Поскольку носителями электрического заряда в полевых транзисторах являются только электроны или только дырки их иногда называют униполярными.

Рис. 5. Устройство полевого транзистора с управляющим p-n переходом

Как видно из рисунка транзистор имеет два контакта  к области, по которой проходит управляемый ток основных носителей заряда, Кроме этого, у него есть один или два управляющих электронно-дырочных перехода, смещённых в обратном направлении (см. рис. 5). Если изменить обратное напряжение на p-n переходе, то изменится его толщина. В этом случае изменится толщина области, по которой протекает основных носителей заряда. Определения [5]:

  • Электрод, который инжектирует основные носители, называют истоком (Source - англ).
  • Электрод, на котором собираются основные носители, называется стоком ((Drain - англ.).
  • Вывод (эдектрод) полевого транзистора, к которому приложено управляющее напряжение называется затвором (Gate – англ.).
  • Область полупроводника, по которой протекают основные носители зарядов, между p-n переходом, называется каналом полевого транзистора, проводимость которого может быть как n-, так и p-типа.

Названия электродов сток и исток - условны. Для отдельного полевого транзистора, который не поставлен в электрическую схему,  не имеет значения какие контакты корпуса сток и исток. Все зависит от положения транзистора в цепи. Поскольку полевые транзисторы различаются по типу проводимости с n-каналом и р-каналом, то в связи с этим  полярность напряжений смещения, подаваемых на электроды транзисторов с n- и с p-каналом, имеют разный знак, т.е. противоположны. Условное графическое изображение (УГО) полевого транзистора с каналом n-типа и p-типа изображено на рисунке 6.

Информация о работе Полевые транзисторы и их применение